
AN OPTIMAL RANDOMIZED ALGORITHM FOR d-VARIATE ZONOID DEPTH

Pat Morin
School of Computer Science

Carleton University
morin@scs.carleton.ca

Abstract. A randomized linear expected-time algorithm for computing the zonoid depth (Dyckerhoff
et al 1996, Mosler 2002) of a point with respect to a fixed dimensional point set is presented.

1 Introduction

Let S be a set of n points in Rd. For a real number k ≥ 1, the k-zonoid of S is defined as

Zk(S) =

∑
p∈S

λpp : 0 ≤ λp ≤ 1/k for all p ∈ S and
∑

p∈S λp = 1


[8, 19]. Notice that, for k = 1 the 1-zonoid of S is the convex hull of S, i.e., Z1(S) = conv(S). As k
increases, Zk(S) becomes smaller and smaller until the limiting case k = n, for which Zn(S) consists of
a single point, the mean of S. The zonoid depth of a point p ∈ conv(S) with respect to S is defined as

Z(p, S) = sup{k : p ∈ Zk(S)} ,

and is a real number in the interval [1, n].

Dyckerhoff et al [8] give an algorithm to compute Z(p, S) by solving a linear program in the
variables {λp : p ∈ S}. To obtain an efficient algorithm they make use of the fact that most of the
constraints on the λ’s are independent of S. The worst-case running time of their algorithm is unclear.

Bern and Eppstein [1] study zonoids (also called reduced convex hulls) in the context of support
vector machines used in machine learning. Among other things they solve a more general problem
than that of zonoid depth: Given two sets S1 and S2 in Rd, compute the minimum value k such that
Zk(S1) ∩ Zk(S2) is non-empty. Their algorithm has a running time of O(n(Ld log n)O(1)), where L is
the number of bits used to describe the points in S1 and S2. Their algorithm uses Kachiyan’s ellipsoid
method for linear programming [13] to exploit the fact that, for a given direction v, it is easy (see
Section 3) to test if there is a hyperplane orthogonal to v that separates Zk(S1) and Zk(S2).

The zonoid depth decision problem asks, given p, k and S, if p ∈ Zk(S). Ogryczak and Tamir
[20] show that the dual of the zonoid depth decision problem can be reduced to a linear multiple-choice
knapsack problem that can be solved in O(n) time using the algorithms of Zemel [23] or Dyer [9].
Zemel and Dyer’s algorithms are, in turn, modifications of Megiddo’s O(n) time algorithm for linear

1

programming in fixed dimensions [17, 18]. While these results optimally solve the zonoid depth decision
problem, further machinery is needed to turn these results into an algorithm for computing the zonoid
depth of p with respect to S.

Gopala and Morin [12] consider algorithms for bivariate (d = 2) zonoid depth and give a ran-
domized O(n) expected time algorithm for computing Z(p, S) when p and S are in R2. Their algorithm is
a combination of two techniques, namely a prune-and-search algorithm due to Lo et al [15] for searching
the k-level of a line arrangement and an optimization method due to Chan [3] for efficiently converting
decision algorithms into optimization algorithms. While the latter technique extends efficiently into
arbitrary (constant) dimensions [4] the former technique, unfortunately, does not.

The current paper extends and bridges the above results by giving an O(n) time algorithm to
compute Z(p, S) when p and S are in R

d for any constant dimension d. The algorithm uses a recent
method, due to Chan [4], for solving linear programs with many constraints that are defined implicitly
by a small number of objects. Besides being the first linear-time algorithm for solving the zonoid depth
problem in constant dimensions, the current results are interesting for two other reasons:

1. Zonoid depth is one of many definitions of depth proposed in the robust statistics literature [14].
Perhaps the gold standard in this regard is Tukey (halfspace) depth [22]:

T (p, S) = min{|h ∩ S| : h is a closed halfspace containing p} .

Tukey depth and zonoid depth have an interesting feature in common; under duality, the combi-
natorial structure of the depth k contour is determined by the k-level and the (n − k + 1)-level
of a set of hyperplanes. The structure of k-levels has been extensively studied by combinatorial
geometers [16, Chapter 11] although our understanding of their complexity is still not complete,
even in 2 dimensions.

The current result shows a divergence in the computational complexity of Tukey and zonoid depth.
In constant dimensions d ≥ 3 the fastest algorithms for computing the Tukey depth of a point have
running times of Ω(nd−1) [5], whereas the current result shows that zonoid depth can be computed
in O(n) time in any constant dimension d. When the dimension grows arbitarily large the situation
is even worse. Computing T (p, S) is NP-hard in general [2], while the result of Bern and Eppstein
[1] yields a polynomial time algorithm for computing Z(p, S) in any dimension. Thus, together
these results show that zonoid depth is computationally more tractable than Tukey depth in both
large and small dimensions.

2. Our algorithm makes use of Chan’s recent technique for solving implicit linear programs in small
dimensions [4]. Interestingly, this technique was introduced in order to solve a problem related to
Tukey depth, namely the problem of finding a point p that maximizes T (p, S). Unfortunately, the
resulting algorithm runs in O(n log n + nd−1) time, limiting its usefulness for dimensions d ≥ 3.1

Indeed, although Chan’s technique itself does not asymptotically increase the running time as
the dimension d increases, it seems that most applications of the technique either break down or
have quickly increasing running times as d increases.2 The current result is therefore an atypical
example that illustrates the full utility of this extremely powerful technique.

In the following, all points, vectors, and hyperplanes are assumed to live in Rd and Hd denotes
the set of all hyperplanes in R

d. The notation xi denotes the ith coordinate of the point x. We use
1In fact, this running time is probably optimal. See Chan [4, Section 1.4] for details.
2One notable exception is parametric minimum spanning trees [11].

2

the · notation to denote the inner-product of two points/vectors, i.e., x · y =
∑d

i=1 xiyi. For a set S
of n points and a non-zero vector r, Sr

1 , . . . , Sr
n is the sequence of elements of S ordered by decreasing

projections onto r, i.e., Sr
i · r ≥ Sr

i+1 · r for all 1 ≤ i ≤ n− 1.

For a point x and a hyperplane h, we denote by x↓h the dth coordinate of the vertical projection
of x onto h (the height of x when dropped onto h). For a set H of n hyperplanes, let Hx

i be the ith
hyperplane in H encountered by a downward vertical ray originating at (x1, . . . , xd−1,∞). For ease of
notation we use the shorthand Hx

−i = Hx
|H|−i+1. For i > |H| we use the convention that Hx

i (respectively
Hx
−i) is the “horizontal hyperplane at infinity” {x : xd = −∞} (respectively, {x : xd = +∞}).

The remainder of this paper is organized as follows: Section 2 reviews Chan’s generalized op-
timization technique. Section 3 discusses properties of zonoids in primal and dual space. Section 4
presents an algorithm to answer the zonoid depth decision problem. Finally, Section 5 describes our
algorithm for computing Z(p, S).

2 Chan’s Generalized Optimization Technique

Chan [4] used the following theorem to provide an O(n log n) time algorithm for maximum Tukey depth.3

In the following, and throughout the remainder of the paper, we use the shorthand ∩S to denote
⋂

s∈S s.

Theorem 1 (Chan 2004). Let H denote the set of all halfspaces in Rd, let P denote the set of all possible
inputs to some problem, let f : P 7→ 2H be any function mapping problem inputs to sets of halfspaces, let
g : Rd 7→ R be any linear objective function, and let D(n) = Ω(nε), for some ε > 0, be a non-decreasing
function of n. Suppose that f and g satisfy:

0. Given inputs P1, . . . , Pd ∈ P each of constant size, a point p ∈ ∩(f(P1) ∪ · · · ∪ f(Pd)) maximizing
g(p) can be found in constant time.

1. Given a point p ∈ Rd and an input P ∈ P of size n, there exists a D(n) time algorithm to determine
whether p ∈ ∩f(P).

2. There exists constants α < 1 and r such that, for any input P ∈ P of size n, it is possible to
compute, in D(n) time, inputs P1, . . . , Pr, each of size at most dαne, and such that ∩f(P) =
∩(f(P1) ∪ · · · ∪ f(Pr)).

Then there exists a randomized O(D(n)) expected time algorithm to compute, for any input P ∈ P of
size n a point p ∈ ∩f(P) that maximizes g(p).

It is worth noting that the codomain of the function f may contain infinite sets. That is, it is
acceptable (and common) to have inputs P ∈ P that generate an infinite number of constraints, i.e.,
|f(P)| = ∞.

3Actually, Theorem 1 applies to LP-type problems [21]. Here we only state it’s specialization to linear programming
problems.

3

3 Properties of Primal and Dual Zonoids

The k-zonoid Zk(S) is a convex polytope. The extreme-most vertex of Zk(S) in direction x can be
obtained as a convex combination of the dke extreme-most points of S in direction x. More precisely,

argmax
p

{p · x : p ∈ Zk(S)} =

 bkc∑
i=1

1
k

Sx
i

+ (1− bkc/k)Sx
dke (1)

[1, 12]. Intuitively, we assign the maximum allowable coefficient (1/k) to each of the bkc extreme-most
vertices and the “leftover” (1− bkc/k) is assigned to the next vertex.

We wish to arrive at a situation in which we can apply Theorem 1 and this is best done by
working in the dual. Consider the point-hyperplane duality function ϕ given by

ϕ(x) = {y ∈ Rd : yd = x1y1 + · · ·+ xd−1yd−1 − xd}

when x is a point in Rd and
ϕ(X) = {ϕ(x) : x ∈ X}

when X is a subset of Rd. See Edelsbrunner’s book [10] for properties of this duality.

Let H = ϕ(S). Then, under this duality, the dual k-zonoid ϕ(Zk(S)) is the set of all hyperplanes
in Rd that do not intersect either of two convex sets Ak(S) and Bk(S). That is,

ϕ(Zk(S)) = {h ∈ Hd : h ∩ (Ak(S) ∪Bk(S)) = ∅} ,

where

Ak(S) =

x ∈ Rd : xd ≥

 bkc∑
i=1

1
k

(x↓Hx
i)

+ (1− bkc/k)(x↓Hx
dke)

 (2)

and

Bk(S) =

x ∈ Rd : xd ≤

 bkc∑
i=1

1
k

(x↓Hx
−i)

+ (1− bkc/k)(x↓Hx
−dke)

 . (3)

The definitions of Ak(S) and Bk(S) follow from (1) and the duality ϕ. The two sets Ak(S) and Bk(S)
are convex, unbounded from above, respectively, below, and piecewise linear. Indeed, the linear pieces
of Ak(S) (respectively Bk(S)) are in correspondence with the linear pieces of the dke-level (respectively
the (n−bkc+ 1)-level) of the hyperplanes in H.4 Thus, Ak(S) and Bk(s) are convex polytopes that are
implicitly defined by the hyperplanes in H and it is these implicit “linear programs” that will ultimately
allow us to apply Theorem 1.

4 The Decision Algorithm

Next we consider the following decision problem: Given a point set S and an integer k, is the origin
contained in Zk(S)? By translation, a solution to this problem allows us to test if an arbitrary point

4When k is not an integer, there is a bijection between the pieces of Ak(S) and the dke-level of H. When k is an integer
there is an injection from Ak(S) onto the k-level of H.

4

p ∈ Rd is contained in Zk(S). One approach to solving this problem is to compute the intersection of
Zk(S) with the vertical line {x ∈ Rd : x0 = x1 = · · · = xd−1 = 0} through the origin and then check if
this intersection contains the origin.

Under the duality ϕ, the above strategy is equivalent to finding the lowest point on Ak(S) and
the highest point on Bk(S) and checking that each of these points is above, respectively, below, the
hyperplane {x ∈ R

d : xd = 0}. In the remainder, we focus on determining the lowest point in Ak(S).
Finding the highest point in Bk(S) is done in a symmetric manner. However, before we can proceed, we
need to define a slightly more general problem involving weights.

Let S be a set of n points in Rd and let w : S 7→ N be a function assigning positive integer weights
to the elements of S. We denote by Sw the multiset in which each element p ∈ S occurs w(p) times. The
w-weighted zonoid Zk(S, w) is simply the k-zonoid of the multiset Sw, i.e., Zk(S, w) = Zk(Sw). As with
standard zonoids, the weighted zonoid Zk(S, w) dualizes to the set of all hyperplanes that do not intersect
either of two convex regions Ak(S, w) and Bk(S, w), where Ak(S, w) = Ak(Sw) and Bk(S, w) = Bk(Sw).

This definition of weighted zonoids allows us to naturally define subproblems. For a subset
C ⊆ S, define the total weight

w(C) =
∑
p∈C

w(p)

and the weighted mean

µ(C) =
1

w(C)

∑
p∈C

p× w(p) .

The contraction of (S, w) by C is obtained by replacing the points of C by their weighted average, µ(C).
More precisely, the contraction of (S, w) by C is the pair (R, v) where

R = (S \ C) ∪ {µ(C)}

and

v(p) =
{

w(p) if p ∈ S \ C
w(C) if p = µ(C)

The following lemma shows that contraction results in strictly smaller zonoids:

Lemma 1. If (R, v) is a contraction of (S, w) by C then Zk(R, v) ⊆ Zk(S, w).

Proof. Let x be any point in Zk(R, v). Then, by the definition of zonoids:

x =
∑

p∈Rv

λpp

=

 ∑
p∈(R\{µ(C)})v

λpp

+

 ∑
p∈{µ(C)}v

λµ(C)p


=

 ∑
p∈(S\C)w

λpp

+

 ∑
p∈Cw

λµ(C)p


∈ Zk(S, w)

as required.

5

We now have all the tools required to apply Theorem 1 to solve our decision problem.

Theorem 2. Given a set S of n points in Rd and a function w : S 7→ N that is computable in constant
time, the point x ∈ Ak(S, w) such that xd is minimum can be found in O(n) expected time.

Proof. Let f be the function that maps the pair (S, w) onto a set of halfspaces whose intersection is
Ak(S, w) and let the objective function g(x) = xd. We need to show that the functions f and g satisfy
Conditions 0–2 of Theorem 1.

To satisfy Condition 0 of Theorem 1 we can enumerate all the linear constraints generated by
each of the d subproblems and use any linear programming algorithm to find a point x that satisfies all
constraints and such that xd is minimum. There are only d subproblems, each of constant size, so this
step takes constant time, as required.

To satisfy Condition 1 of Theorem 1 we observe that testing if x ∈ Ak(S, w) simply involves
checking if x satisfies (2). Let H = ϕ(S). This check can be accomplished by using a D(n) = O(n)
time weighted selection algorithm [7, Exercise 9-2] to compute the smallest index t and the hyperplanes
Hx

1 , . . . ,Hx
t such that

∑t
i=1 w(ϕ(Hx

i)) ≥ k. Once this is done we need only check (2) which, in the
weighted setting, becomes

x ≥

(
t−1∑
i=1

1
k

(x↓Hx
i)× w(ϕ(Hx

i))

)
+

1
k

(x↓Hx
t)×

(
k −

t−1∑
i=1

v(ϕ(Hx
i))

)
.

To satisfy Condition 2 of Theorem 1 we make use of cuttings [16, Section 6.5]. In particular,
we use the fact that, in O(n) time, it is possible to partition R

d into r = O(1) simplices ∆1, . . . ,∆r

such that the interior of each simplex is intersected by at most n/2 of the hyperplanes in ϕ(S). For
each simplex ∆i we create a subproblem (Si, wi) as follows: Let Ci ⊆ S contain every point p ∈ S such
that ϕ(p) is above the interior of ∆i. We first construct the pair (Ti, wi) by contracting (S, w) by Ci.
Next, we obtain Si by removing from Ti every point p such that ϕ(p) is below the interior of ∆i. The
subproblems (Si, wi) for 1 ≤ i ≤ r that we obtain in this manner are each of size at most n/2 + 2.

It follows from Lemma 1 (the contraction step) and the definition of Zk(S, w) (the deletion step)
that Zk(Si, wi) ⊆ Zk(S, w). In the dual, this means that Ak(Si, wi) ⊇ Ak(S, w). To satisfy Condition 2
of Theorem 1 we must show that

⋂r
i=1 Ak(Si, wi) = Ak(S, w). To do this, consider any point x on the

boundary of Ak(S, w). It is sufficient to show that x is also on the boundary of at least one region
Ak(Si, wi) for 1 ≤ i ≤ r. The point x is defined by dke hyperplanes h1, . . . , hdke ∈ ϕ(Sw) in the sense
that

xd =

 bkc∑
i=1

1
k

(x↓hi)

+ (1− bkc/k)(x↓hdke) .

Let q be the vertical projection of x onto hdke. There is some simplex ∆i that contains q. Observe
that each of h1, . . . , hdke−1 is either completely above the interior of ∆i or intersects ∆i. Furthermore,
any hyperplane in ϕ(S) that is completely above ∆i is one of h1, . . . , hdke−1. Therefore, the subproblem
(Si, wi) is obtained from (S, w) by contracting Ci ⊆ {ϕ(h1), . . . , ϕ(hdke−1)} and then deleting some
subset of S \ {ϕ(h1), . . . , ϕ(hdke−1)}. Let I = ϕ(Swi

i). Then, every point x in Ak(Si, wi) must satisfy

xd ≥

 bkc∑
i=1

1
k

(x↓Ix
i)

+ (1− bkc/k)(x↓Ix
dke)

6

=

 bkc∑
i=1

1
k

(x↓hi)

+ (1− bkc/k)(x↓hdke) .

This last equality follows from the fact that the contraction operation that creates (Si, wi) simply
takes the weighted mean of k′ ≤ k hyperplanes h1, . . . , hk′ ∈ ϕ(Sw) and replaces these with k′ copies
Ix
1 , . . . , Ix

k′ ∈ ϕ(Swi
i) of the mean. Thus x is on the boundary of Ak(Si, wi), as required. We have now

satisfied all three conditions necessary to apply Theorem 1, completing the proof.

5 The Optimization Algorithm

In the previous section we showed, given p, S and k, how to answer the question: Is p ∈ Zk(S)? In this
section we consider the optimization problem, given p and S: What is the maximum value of k such that
p ∈ Zk(S)? For this problem, we apply Theorem 1 again, this time on a problem in Rd+1. To do this,
we use the (d + 1)st coordinate of our space to represent the value k, so that we consider the polytope
whose cross-sections are the k-zonoids for all 1 ≤ k ≤ n.

Formally, consider the point set

Z(S) = {p ∈ Rd+1 : (p1, . . . , pd) ∈ Zpd+1(S)} .

The set Z(S) is a convex polytope in Rd+1. Dualizing Z(S) as before gives two regions A(S) and B(S).
Recall that the zonoid depth of p with respect to S is

Z(p, S) = sup{k : p ∈ Zk(S)}
= inf{k : p /∈ Zk(S)} .

If we assume (by translation) that p is the origin, then, in the dual p becomes the hyperplane h0 = {x :
xd = 0} and p ∈ Zk(S) if and only if h0 does not intersect Ak(S) or Bk(S). In particular, the value k
we are searching for is the minimum of kA and kB where

kA = min{xd+1 : x ∈ h0 ∩A(S)}

and
kB = min{xd+1 : x ∈ h0 ∩B(S)}

In words, we want the minimum value of k such that Ak(S) or Bk(S) intersects the hyperplane h0 =
{x ∈ Rd : xd = 0}.

Theorem 3. Given a set S of n points in R
d and a point p ∈ R

d, the maximum value k such that
p ∈ Zk(S) can be found in O(n) expected time.

Proof Sketch. The proof is another application of Theorem 1 to find the values kA and kB described
above. We focus only on finding kA, as finding kB is a symmetric problem. The details are much the
same as in Theorem 2 so we only sketch them. As before we generalize A(S) and B(S) to the weighted
setting using multisets and let f(S, w) be the function that maps (S, w) on to the set of linear constraints
that define h0 ∩A(Sw).

As before, S satisfies Condition 0 of Theorem 1 since, for constant size subproblems we can
explictly generate the polytopes Z(S1, w1), . . . , Z(Sd+1, wd+1), compute their common intersection with
h0 and find a point in the intersection maximizing the objective function g(p) = pd+1.

7

The decision problem we must solve to satisfy Condition 1 of Theorem 1 is the problem of testing
whether a point p ∈ Rd+1 is contained in h0 ∩A(S). But this is simply a matter of checking that p ∈ h0

and that (p1, . . . , pd) is in Apd+1(S), a problem for which we described an O(n) time algorithm in the
proof of Theorem 2.

The partitioning into subproblems required to satisfy Condition 2 of Theorem 1 can be done in
exactly the same manner as described in the proof of Theorem 2. To see that this partitioning works in
the current case we need only observe that the paritioning makes no use of the value k and the argument
used to show its correctness holds for all values of k. This completes the proof sketch.

We conclude with a few remarks about the constants in the algorithm. The use of Chan’s
technique yields a simple-to-implement algorithm, but this algorithm has extremely large constants
hidden in the asymptotic notation. Even using the most sophisticated forms of cuttings and fixed-
dimensional linear programming, the expected running time of the algorithm is given by the recurrence

T (n) = (log r)(cd)d/2+O(1) × T (n/r) + O(rdn) ,

where r is an integer parameter and c is a constant that occurs in Clarkson’s randomized linear
programming algorithm [6]. Thus, to even obtain an expected running time of O(n), we require
r/ log(r) > (cd)d/2+O(1). It might be possible to reduce the dependence on d somewhat by engineering
a hybrid algorithm that uses Chan’s original optimization technique [3] in conjunction with the decision
algorithm of Ogryczak and Tamir [20]. However, the latter algorithm already includes a factor of d! in
the running time so the the running time of the resulting algorithm will still have a superpolynomial
dependence on d.

References

[1] M. W. Bern and D. Eppstein. Optimization over zonotopes and training support vector machines.
In Workshop on Algorithms and Data Structures, pages 111–121, 2001.

[2] N. Chakravarti. Some results concerning post-infeasibility analysis. European Journal of Operations
Research, 73:139–143, 1994.

[3] T. M. Chan. Geometric applications of a randomized optimization technique. Discrete & Compu-
tational Geometry, 22(4):547–567, December 1999.

[4] T. M. Chan. An optimal randomized algorithm for maximum Tukey depth. In Proc. 15th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 423–429, 2004.

[5] T. M. Chan. Low-dimensional linear programming with violations. SIAM Journal on Computing,
34:879–893, 2005.

[6] K. L. Clarkson. Las Vegas algorithms for linear and integer programming when the dimension is
small. Journal of the ACM, 42(2):488–499, 1995.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. McGraw-Hill,
second edition, 2001.

[8] R. Dyckerhoff, G. Koshevoy, and K. Mosler. Zonoid data depth: Theory and computation.
In A. Prat, editor, COMPSTAT 1996 - Proceedings in Computational Statistics, pages 235–240.
Physica-Verlag, Heidelberg, August 1996.

8

[9] M. E. Dyer. An O(n) algorithm for the multiple-choice knapsack linear program. Mathematical
Programming, 29(1):57–63, 1984.

[10] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, Germany,
1997.

[11] D. Eppstein. Setting parameters by example. SIAM Journal on Computing, 82:638–653, 2003.

[12] H. Gopala and P. Morin. Algorithms for bivariate zonoid depth. Computational Geometry: Theory
and Applications, 2006. Special issue of selected papers from the 16th Canadian Conference on
Computational Geometry (CCCG 2004).

[13] L. G. Khachiyan. A polynomial time algorithm for linear programming. Soviet Mathematics Dok-
lady, 20:1092–1096, 1979.

[14] R. Liu, J. M. Parelius, and K. Singh. Multivariate analysis by data depth: Descriptive statistics,
graphics and inference. The Annals of Statistics, 27(3):783–858, June 1999.

[15] C.-Y. Lo, J. Matousek, and W. Steiger. Algorithms for ham-sandwich cuts. Discrete & Computa-
tional Geometry, 11:433–452, 1994.

[16] J. Matoušek. Lectures on Discrete Geometry. Springer-Verlag, New York, 2002.

[17] N. Megiddo. Linear time algorithms for linear programming in R
3 and related problems. SIAM

Journal on Computing, 12:759–776, 1983.

[18] N. Megiddo. Linear programming in linear time when the dimension is fixed. Journal of the ACM,
31:114–127, 1984.

[19] K. Mosler. Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach, volume
165 of Lecture Notes in Statistics. Springer-Verlag New York, Inc, 2002.

[20] W. Ogryczak and A. Tamir. Minimizing the sum of the k largest functions in linear time. Information
Processing Letters, 85:117–122, 2003.

[21] M. Sharir and E. Welzl. A combinatorial bound for linear programming and related problems. In
Proceedings of Symposion on Theoretical Aspects of Computer Science (STACS ’92), pages 569–588,
1992.

[22] J. W. Tukey. Mathematics and the picturing of data. In Ralph D. James, editor, Proceedings of the
International Congress of Mathematicians, volume 2, pages 523–531, Vancouver Canada, August
1974.

[23] E. Zemel. An O(n) algorithm for the linear multiple choice knapsack problem and related problems.
Information Processing Letters, 18:123–128, 1984.

9

