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Abstract. We prove that, for every simple polygon P having k ≥ 1 reflex
vertices, there exists a point q ∈ P such that every half-polygon that
contains q contains nearly 1/2(k + 1) times the area of P . We also give
a family of examples showing that this result is the best possible.
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1. Introduction

Winternitz’ Theorem [1, pp. 54–55] is a classic theorem in convex geometry
that has been rediscovered many times [4, 9, 12, 13, 15]. Winternitz’ Theorem
states that, for any convex polygon P , there exists a point q ∈ P such that
any halfspace that contains q contains at least 4/9 of the area of P . The
dissection of a triangle into 9 similar triangles shown in Figure 1 can easily
be used to show that the bound of 4/9 is tight when P is a triangle.

In this paper, we consider a generalization of Winternitz’ Theorem to the case
when P is a simple polygon. A chord of a simple polygon P is a closed line
segment whose interior is contained in the interior of P and whose endpoints
are on the boundary of P . If c is a chord of P then P \ c has two components
P+ and P−. We call the closure of these polygons half-polygons of P . We
define the depth of a point q ∈ P as

δP (q) = min{area(h) : h is a half-polygon of P that contains q} .

Winternitz’ Theorem states that, if P is convex then there exists a point
q ∈ P with δP (q) ≥ (4/9) area(P ).
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Figure 1. A triangle has maximum halfspace depth 4/9.

Winternitz’ Theorem is closely related to the Centerpoint Theorem [10, 14]
which states that for any set S of n points in R2 there exists a point q ∈ R2

such that every closed halfplane that contains q contains at least n/3 points
of S. The Centerpoint Theorem is easily derived from Helly’s Theorem [3] by
considering all halfplanes that contain at least 2n/3 points of S and taking
q to be in their common intersection.

Helly’s Theorem also holds for half-polygons of P . In particular, if P1, . . . , Pn
are half-polygons of P and Pi ∩ Pj ∩ Pk 6= ∅ for any 1 ≤ i < j < k ≤ n then⋂n
i=1 Pi 6= ∅. Therefore one might expect that there always exists a point

q with δP (q) greater than or equal to some constant fraction of area(P ),
independent of the number of reflex vertices in P . However, this intuition
turns out to be false.

Theorem 1. For any ε > 0 and any simple polygon P with k ≥ 1 reflex
vertices, there exists a point q ∈ P such that δP (q) ≥ area(P )/2(k + 1)− ε.

The lower bound of Theorem 1 is essentially the best possible:

Theorem 2. For every integer k ≥ 1 and every ε > 0, there exists a polygon
P with k reflex vertices, such that no point in P has depth greater than
area(P )/2(k + 1) + ε.

Our results continue an existing line of research relating the combinatorial
and computational properties of polygons to the number of their reflex ver-
tices. Hurtado and Noy [7] give tight upper and lower bounds on the number
of triangulations of a polygon as a function of the number of its reflex ver-
tices. Hurtado, Noy, and Urrutia [5] prove that the diameter of the flip graph
of triangulations of a polygon is O(n+k2). Bose et al [2] show that the com-
putational complexity of computing ham-sandwich cuts in simple polygons is
Θ(n log k). Hertel and Mehlhorn [6] give a simple O(n log k) time algorithm
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for triangulating a simple polygon. Keil [8] gives an O(k2n log n) time algo-
rithm for finding an optimal convex partitioning of a simple polygon. The
above results, and those of the current paper, illustrate the importance of
the number of reflex vertices as a parameter when studying combinatorial
and computational properties of simple polygons.

The remainder of the paper is organized as follows: In Section 2 a proof of
Theorem 1 is given. Section 3 presents a family of simple polygons that prove
Theorem 2.

2. The Lower Bound

For simplicity, we will prove a discrete version of Theorem 1 that is a polygo-
nal analog of the Centerpoint Theorem. In the discrete version, we are given
a polygon P and a finite set of points N in the interior of P , such that no
point of N is collinear with 2 vertices of P . We call N a general set of points
in P . The N -depth of a point q ∈ P is defined as

δP,N (q) = min{|h ∩N | : h is a half-polygon of P that contains q} .

The following claim generalizes the Centerpoint Theorem. Also, by taking the
point set N to be (sufficiently close to) the vertices of a (sufficiently dense)
grid, the claim establishes Theorem 1. (Alternatively, in the proof of the
claim, one can simply replace the point set measure with the area measure.)

Claim 1. Let P be a simple polygon having k ≥ 1 reflex vertices and let N
be a general set of points in P . Then there exists a point q ∈ P such that
δP,N (q) ≥ |N |/2(k + 1).

Proof. Refer to Figure 2 for what follows. Divide polygon P into at most
k+1 convex sub-polygons by iteratively adding a chord on each reflex vertex
so that it becomes a convex vertex in each of the two subpolygons generated.
Let P ∗ be a convex sub-polygon that contains at least |N |/(k + 1) points of
N .

Note that P ∗ contains at most k′ ≤ k edges e1, . . . , ek′ that are not edges of
P . For each such edge, ei, define Qi as the half polygon of P bounded by the
chord of P that contains the edge ei and that does not contain P ∗. (Note that

the Qi are not necessarily disjoint.) Observe that
⋃k′
i=1Qi contains P \ P ∗.

In particular, the union of the Qi contains all the points of N that are not
contained in P ∗.

Let Q be any of the Qi, for 1 ≤ i ≤ k′, that maximizes |Qi ∩ N |. Observe
that |(P ∗ ∪ Q) ∩ N | ≥ 2|N |/(k + 1). We will show how to find a point q in
P ∗ ∪Q such that

δP∗∪Q,N∩(P∗∪Q)(q) ≥ |N |/2(k + 1) .
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Figure 2. The Proof of Claim 1.

The Claim then follows from the fact that P ∗∪Q ⊆ P and N∩(P ∗∪Q) ⊆ N ,
so that δP,N (q) ≥ δP∗∪Q,N∩(P∗∪Q)(q).

Let r1r2 be a maximal line segment that is on the boundary of both P ∗

and Q. Define r′1r
′
2 to be a chord of P ∗ parallel to r1r2 and that separates

exactly |N |/(k + 1) points of N ∩ P ∗ from r1r2. The chord r′1r
′
2 separates

P ∗ ∪ Q into two sub-polygons, P ′ and Q′, where P ′ ⊆ P ∗. Observe that
|Q′ ∩N | ≥ |P ′ ∩N | = |N |/(k + 1)

The point, q, of high depth we are searching for will be on the segment
r′1r
′
2. The remainder of the proof uses a fairly standard technique that can be

used, for example, to prove the Planar Ham Sandwich Theorem [11]. However,
unlike most applications of this technique we do not have the continuity that
is usually required to use this technique. We therefore take special care to
explain it in detail.

For 0 < t < 1, let qt = (1 − t)r′1 + tr′2. Let Ct be the chord of P ′ ∪ Q′ that
contains qt and that bisects P ′ ∩N . If |P ′ ∩N | is odd, then Ct is unique and
always contains a point of N . Otherwise, we can make Ct unique by defining
it to be equidistant from the nearest points of P ′ ∩N on its left and right.

Let Q′t denote the component of Q′ \Ct that contains r′1 and let Q
′
t = Q′ \Q′t.

Observe that, for all sufficiently small ε > 0, Q′ε ∩N = ∅ and Q′1−ε = Q′ ∩N .
Furthermore, |Q′t ∩N | is an increasing function of t. Therefore, there is some
value t∗, 0 < t∗ < 1, such that, for all δ > 0, |Q′t∗+δ ∩N | ≥ |N |/2(k+ 1) and

|Q′t∗−δ ∩N | ≥ |N |/2(k + 1).

We claim that δN,P (qt∗) ≥ |N |/2(k + 1). To see why this is so, observe that
Ct∗ partitions P ′ into two half-polygons, P ′1 and P ′2, each of which contains
|N |/2(k+ 1) points. Any half-polygon that contains qt∗ but does not contain
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(a) (b)

Figure 3. The construction for the proof of Theorem 2 with
c = 1/4.

either P ′1 or P ′2 must contain at least one of Q′t∗+δ or Q
′
t∗−δ for some δ > 0.

Therefore, δN,O(qt∗) ≥ |N |/2(k + 1). �

3. The Upper Bound

Next we proceed with the proof of Theorem 2.

Proof (of Theorem 2). Refer to Figure 3. Our construction is parameterized
by a value c < 1/2. The construction begins by constructing a spiral, with
k+1 segments s1, . . . , sk+1, where segment si has length 1+di/2e c and creates
an angle of π/2 with si+1. Next, we expand the segments s1, . . . , sk inwards
so that each segment si becomes a rectangle Ri of the same length as si, but
whose area is c. It is easy to verify that the union of these rectangles is a simple
polygon with k reflex vertices. Furthermore, the area of the intersection of
any two rectangles Ri and Ri+1 is at most c2. Finally, we replace each reflex
vertex with two convex vertices and one reflex vertex as shown in Figure 3.b.
Suppose the reflex vertex v occurs at the intersection of a horizontal rectangle
H and a vertical rectangle V . Then the location of the vertex is chosen so
that its y-coordinate bisects H and its x-coordinate bisects V . By choosing
the two convex vertices sufficiently close together, this decreases the area of
P by at most δ for any constant δ > 0. Denote the resulting simple polygon
by P .

Consider the path, shown in Figure 3.b, that passes through every reflex
vertex and nearly bisects R1 and Rk+1. This path partitions P into k + 2
pieces. One of these pieces has area at most c(k + 1)/2 and the other k + 1
pieces have area at most c/2. Each of the small pieces is a half-polygon of P ,
so any point q contained in such a piece has δP (q) ≤ c/2. On the other hand,
any point contained in the large piece is also contained in a half-polygon of
p whose area is at most c/2. Therefore, δP (q) ≤ c/2 for any q ∈ P . Finally,
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observe that the area of P is at least

area(P ) ≥ (k + 1)c− k(c2 + δ) ≥ (k + 1)(c− c2 − δ)

Therefore,

δP (q)

area(P )
≤
(

1

2(k + 1)

)(
1

1− c− δ/c

)
.

Selecting δ = c2 and c sufficiently small completes the proof. �
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