
Output-Sensitive Algorithms for Tukey Depth and
Related Problems∗

David Bremner
University of New Brunswick

Dan Chen
Carleton University

John Iacono
Polytechnic University

Stefan Langerman
Université Libre de Bruxelles

Pat Morin
Carleton University

Abstract

The Tukey depth (Tukey 1975) of a point p with respect to a finite set S of points is
the minimum number of elements of S contained in any closed halfspace that contains
p. Algorithms for computing the Tukey depth of a point in various dimensions are
considered. The running times of these algorithms depend on the value of the output,
making them suited to situations, such as outlier removal, where the value of the output
is typically small.

Keywords: Tukey depth, halfspace depth, algorithms, computational statistics, computa-
tional geometry, fixed-parameter tractability

1 Introduction

Let S be a set of n points in Rd. The Tukey depth, or halfspace depth of a point p ∈ Rd with
respect to S can be defined in several equivalent ways [32]:

depth(p, S) = min{|h ∩ S| : h is a closed halfspace containing p} (1)

= min{|h ∩ S| : h is a closed halfspace with p on its boundary} (2)

= min{|S ′| : p is outside the convex hull of S \ S ′} (3)

A point of maximum Tukey depth serves as a d-dimensional generalization of the (1-
dimensional) median that has many nice statistical properties including being robust against

∗This research was partly funded by the NSERC Canada.

1

outliers, invariant under affine transformations, and monotone. The contours of the Tukey
depth function1 are generalizations of 1-dimensional percentiles that also have many nice
properties including convexity, robustness, and monotonicity [27, 28, 31]. Algorithms for
computing a point p ∈ Rd of maximum Tukey depth have a rich history [15, 14, 5] that has
recently culminated (from a theoretical point of view) in Chan’s O(n log n+ nd−1) expected
time algorithm.

In this paper we consider the simpler, but still very difficult, problem of computing the
Tukey depth of a given point p with respect to a set S. If the dimension d of the problem
is part of the input, then this problem is NP-hard [13], and is even APX-hard [1]. The
current paper presents algorithms whose running times are dependent on the dimension d
and the value, k, of the output. In some applications, such as outlier removal, the goal is to
identify quickly the data points of small depth (so they can be removed). Our algorithms
are particularly well-suited to such applications since they run quickly when the depth of p
is small. Specifically, we present the following results:

1. A simple O(n + k log k) time algorithm to compute the Tukey depth of a point in R2

(Section 2). The most complicated data structure used in this algorithm is a binary
heap.

2. AnO(n+(n−k) log(n−k)) time algorithm to find the largest clique in an interval graph,
where k is the size of the clique found (Section 3). This problem is a generalization of
the Tukey depth problem in R2.

3. An O(n log n + k2 log n) time algorithm to compute the Tukey depth of a point in R3

and an O(n+k11/4n1/4 logO(1) n) time algorithm to compute the Tukey depth of a point
in R4 (Section 4). These algorithms rely on results of Chan on linear programming
with violated constraints [6] which in turn rely on sophisticated range searching data
structures [16, 23] and/or dynamic convex hull data structures [4].

4. A simple O(dk LP(n, d− 1)) time algorithm to compute the Tukey depth of a point in
Rd, where LP(n, d) denotes the time required to determine the feasibility of a linear
program having n constraints and d variables (Section 5). Not surprisingly, this algo-
rithm is also based on linear programming with violated constraints and is obtained by
presenting a fixed-parameter tractable algorithm for a parameterization of the NP-hard
MaximumFeasibleSubsystem problem.

For the remainder of this paper we use the following notations: For points p, q ∈ Rd, pi
denotes the ith coordinate of p, ‖p‖ = (

∑d
i=1 p

2
i)

1/2, and p · q =
∑d

i=1 piqi. The unit sphere
in Rd+1 is denoted by Sd = {p ∈ Rd+1 : ‖p‖ = 1}. The top side of this sphere is denoted by
Sd+ = {p ∈ Sd : pd+1 > 0}, the bottom side is denoted by Sd− = {p ∈ Sd : pd+1 < 0} and the
equator is denoted by Sd0 = {p ∈ Sd : pd+1 = 0} .

1The `-contour of the tukey depth function is defined as Γ`(S) = {p ∈ Rd : depth(p, S) ≥ `}.

2

Q0Q1

Q2 Q3

p

r

q

Figure 1: Computing the quantity depth1(p, S).

2 An Algorithm for Points in R2

In this section we give a simple O(n + k log k) time algorithm to compute the Tukey depth
of a point p ∈ R2 with respect to a set S of n points in R2. We first note that an O(n log n)
time sort-and-scan algorithm is easily obtained by sorting the points of S radially about p
and then scanning the resulting sorted list using two pointers [15]. The main idea behind
our algorithm to is to reduce the problem to a kernel of size O(k) on which we can apply
this sort-and-scan algorithm.

The algorithm begins by partitioning R2 into 4 quadrants around p that, in counterclock-
wise order, we denote by Q0, . . . , Q3. The algorithm then simultaneously begins computing
the 4 quantities depth0(p, S), . . . , depth3(p, S) where

depthi(p, S) = min{|h ∩ S| : h is a closed halfspace containing Qi} . (4)

Clearly, depth(p, S) = min{depthi(p, S) : 0 ≤ i ≤ 3} since any closed halfspace containing
p contains at least one of the four quadrants. In the remainder of this section we will
describe how to compute ki = depthi(p, S) in O(n + ki log ki) time. Since the computation
can stop once depthi(p, S) has been computed for the index i that minimizes (4), running
the computation of k0, . . . , k3 in parallel yields an O(n + k log k) time algorithm, where
k = depth(p, S).

Let Si = S ∩ Qi. To compute depthi(p, S) we create two binary heaps Hi−1 and Hi+1

that store the elements of Si−1, respectively Si+1, in clockwise, respectively, counterclockwise,
order around p.2 Creating these two heaps takes O(n) time using the standard bottom-up
algorithm to construct a binary heap [9, Chapter 6]. Next we extract elements one at a time
from each of Hi−1 and Hi+1 until either (a) one of the heaps is empty or (b) we extract two
elements q from Hi−1 and r from Hi+1 such that the angle ∠qpr > π. Suppose we have
extracted ` elements each from Hi−1 and Hi+1 when this occurs. Then, any closed halfspace
containing Qi contains ` − 1 elements extracted from Hi−1 or it contains ` − 1 elements

2Here and in the remainder of this section Si is treated implicitly as S(i mod 4).

3

extracted from Hi+1. Therefore,

|Si|+ `− 1 ≤ depthi(p, S) .

On the other hand, the closed halfspace containing Qi and bounded by the line through
p and the last element extracted from Hi−1 contains at most |Si|+ 2`− 1 points of S, so

depthi(p, S) ≤ |Si|+ 2`− 1 .

Next, we continue to extract as many elements as possible from each of Hi−1 and Hi+1 up
to a maximum of an additional `−1 elements each. The total time required to extract these
at most 4` − 2 elements from the two heaps is O(` log n). By sorting and scanning all the
elements extracted from the heaps plus the elements of Si we can then compute depthi(p, S)
in an additional

O((|Si|+ `) log n) = O(ki log n)

time. This yields an a total running time of

O(n+ ki log n) = O(n+ ki log ki) ,

as required.3 This completes the proof of:

Theorem 1. The Tukey depth of a point p with respect to a set S of n points in R2 can be
computed in O(n+ k log k) time, where k is the value of the output.

3 An Algorithm for Max-Clique in Interval Graphs

The problem of computing Tukey depth in R2 can be viewed as a problem on a set of circular
arcs. By the second definition of Tukey depth (Equation (2)), computing the Tukey depth
of p is equivalent to finding a unit normal vector v such that the halfspace with p on its
boundary and having inner normal v contains as few points of S as possible. Note that the
set of unit normals in R2 is homeomorphic to the unit circle S1 and that each point q ∈ S
defines an open circular arc of S1 such that all choices of v in this circular arc yield a closed
halfspace with p on its boundary that does not contain q. In fact, all the open circular arcs
obtained this way are half-circles. Thus, the Tukey depth problem reduces to the problem
of finding a vector v that is contained in the largest number of half-circles. Although it is
not immediately apparent, the correctness of the algorithm in Theorem 1 relies crucially on
the fact that the arcs of S1 defined by the Tukey depth problem are all half-circles and not
arcs of arbitrary length.

An obvious generalization of the Tukey depth problem is that of, given a set of n circular
arcs of S1, finding a point p ∈ S1 contained in the largest number of arcs. Note that, in

3This equation follows from the analysis of two cases. If ki ≤ n/ log n then ki log ki ≤ n. On the other
hand, if ki > n/ log n then log ki > log n− log log n so ki log n < 2ki log ki for all n ≥ 16.

4

p1
p2

p3
p4

p5
p6 p7 p8 p9 p10

p11 p12 p13

p14

q q′

Figure 2: An illustration of Lemma 1 and Lemma 2. The point q ∈ [p6, p7] is contained in 6
intervals. Therefore, by Lemma 1, the point q′ ∈ [p10, p11] is contained in at least 6− 4 = 2
intervals and by Lemma 2 q′ is contained in at most 14− 6− 4 = 4 intervals.

this generalization, the arcs can have arbitrary and different lengths. Like the Tukey depth
problem, this problem is easily solved in O(n log n) time by the sort-and-scan algorithm.

Unfortunately, for the problem of finding a point p contained in the largest number of
circular there can be no algorithm whose running time depends on the number k of arcs
containing p or even on the number (n− k) of arcs not containing p. There are two reasons
for this. The problem of testing if a set of circular arcs are all pairwise-disjoint has an
Ω(n log n) lower bound [3]. This problem can be solved by finding a point p contained in the
largest number of arcs and then determining, in O(n) time, how many arcs contain p. Thus,
even in the cases where k ∈ {1, 2}, the Ω(n log n) lower bound holds. At the other end of
the scale, testing whether a set of n circular arcs covers S1 has an Ω(n log n) lower-bound [3].
This problem is equivalent, by taking the complement of each arc, to the problem of finding
the point contained in the maximum number of arcs and checking if this point is contained
in n of the complementary arcs. In particular, the original set of arcs do not cover S1 if and
only if there is a point p contained in every complementary arc. Thus, the Ω(n log n) lower
bound holds even when k ∈ {n, n− 1}.

Since we can not hope to find an output-sensitive algorithm for circular arcs of S1,
we settle for the next best thing. Let I be a set of real intervals. Here we describe an
O(n+(n−k) log(n−k)) time algorithm to find a point p ∈ R that is contained in the largest
number of intervals in I. Here k is the number of intervals in I that contain p.

Let p1, . . . , p2n denote the 2n endpoints of the intervals in I, in increasing order. For
convenience we use the convention that pi = −∞ for i ≤ 0 and pi = +∞ for i > 2n.
Note that the p1, . . . , p2n notation is for convenience only and the algorithm we describe
does not require that the endpoints be given in sorted order, nor will it sort them into this
order. Together, the following two observations imply that all the points contained in many
intervals are clustered together. (Refer to Figure 2.)

Lemma 1. Let q ∈ [pi, pi+1] be a point contained in k intervals of I. Then, for any 0 ≤ r ≤ n,
every point q′ ∈ [pi−r, pi+r+1] is contained in at least k − r intervals of I.

Proof. Without loss of generality, assume that q′ ∈ [q, pi+r+1]. There are at most r endpoints
of intervals in I contained in the interval [q, q′]. Therefore there are at most r intervals that
contain q but not q′.

Lemma 2. Let q ∈ [pi, pi+1] be a point contained in k intervals of I. Then, for any n− k ≤
r ≤ n, every point q′ /∈ [pi−r, pi+r+1] is contained in at most 2n− k − r arcs of C.

5

4 10 14 16 15 12 6 3

1 7 13 16 12 6 1

Figure 3: An illustration of the algorithm for interval graphs using sampling at regular
intervals (above) and using random samples (below). The rows of dots show the endpoints
of the intervals with samples drawn as circles labelled with the number of intervals that
contain them. High-depth samples are indicated as filled circles.

Proof. Without loss of generality, assume that q′ > pi+r+1. Then, as we walk from q to q′

we encounter at least r endpoints of intervals in I. At most n − k of these endpoints are
left endpoints of intervals and at least r − (n − k) of these are right endpoints. Thus, the
number of intervals that contain q′ is at most

k + (n− k)− (r − (n− k)) = 2n− k − r ,

as required.

We first explain our algorithm at a high level in which we deliberately ignore several
important implementation details that are discussed later. Refer to Figure 3. Suppose we
are given a value k and only wish to find a value p ∈ R contained in at least k intervals of I.
We begin by taking a regular sample s1, . . . , s2t of p1, . . . , p2n so that any interval [si, si+1]
between two consecutive sample points contains at most n/t points of p1, . . . , p2n. We then
compute, for each sample point si the number of intervals in I that contain si. By Lemma 1,
if there exists any point p ∈ R contained in k intervals of I then the two sample points sj
and sj+1 on either side of p are high-depth samples that are each contained in at least k−n/t
intervals of I. Furthermore, by Lemma 2, the only high-depth samples are contained in the
interval [pi−r, pi+r] for r = 2(n− k) + n/t.

If we choose t =
√
n then r = O(n − k +

√
n). Thus, by computing an interval [pa, pb]

that contains all high-depth samples we can find the point p contained in the largest number
of intervals of C by applying the standard sort-and-scan algorithm on the O(n − k +

√
n)

endpoints of the intervals of C that fall in the interval [pa, pb]. The running time of the
sort-and-scan algorithm is O(m logm) where m is the number of points to be scanned. In
this case m = O(n− k +

√
n) for a running time of

O((n− k +
√
n) log(n− k +

√
n)) = O(n+ (n− k) log(n− k)) ,

as required. Note that the value of k has very little effect on the execution of the algorithm
other than to bound the number of endpoints in the interval [pa, pb] on which the sort-and-
scan algorithm is run. In implementating the above ideas, several complications arise:

6

1. The value of k is not known in advance. However, we do not need the exactly value of
k and the value of k can be estimated using Lemma 1. In particular, since the number
of endpoints between any two consecutive samples is at most at most

√
n the number

of intervals containing si estimates, to within an additive error of
√
n, the number of

intervals containing any point q ∈ [si−1, si+1]. In particular, we can estimate the value
of k by computing, for each sample point si, the number of intervals of I that contain
si (see Issue 3, below) and use the maximum of these values as an estimate for k.

2. We can not obtain a perfectly regular sample s1, . . . , s2
√
n of p1, . . . , p2n in O(n) time.

However, we do not require a perfectly regular sample. By taking a random sample of
size c

√
n log n for an appropriate constant c we obtain a set of samples s1, . . . , sc√n logn

such that, with probability 1 − n−Ω(c), no interval [si, si+1] contains more than
√
n

endpoints of intervals of I [21]. Such a sample still guarantees that the number of
intervals containing a point q ∈ [si, si+1] is estimated, to within an additive error of√
n, by the number of intervals containing si.

3. We can not compute, in O(n) time, for each sample point si, the number of intervals
of I that contain si. However, random sampling helps again here. Let d(si) denote the
number of elements of I that contain si. By taking a random sample I ′ ⊆ I, |I ′| = c

√
n

we can determine for each si a number di such that, with probability 1− n−Ω(c)

d(si)−O(n4/5) ≤ di ≤ d(si) +O(n4/5) .

By storing the
√
n elements of I ′ in an interval tree [22] and then querying this interval

tree with the c
√
n log n sample elements the numbers d1, . . . , dc√n logn can be computed

in O(
√
n log2 n) time.

Note that each of the above steps can be accomplished in o(n) time, determining the
endpoints contained in [pa, pb] can be done in O(n) time, and the final sort-and-scan step
takes O(n+ (n−k) log(n−k)) time. The correctness of the resulting output depends on the
success of the random sampling steps described in points 2 and 3, above. However, Lemma 2
implies that this final sort-and-scan step allows us to check the correctness of the output (by
counting the number of intervals containing pa and pb and comparing this to the computed
value of k) and restarting the algorithm from scratch if necessary. This yields:

Theorem 2. There exists a randomized algorithm that, given a set I of n real intervals,
finds a value p ∈ R contained in the largest number of intervals of I and that runs in
O(n+ (n− k) log(n− k)) expected time, where k is the number of intervals containing p.

4 Algorithms for Points in R3 and R4

The previous section showed how the problem of computing the Tukey depth of a point in R2

is equivalent to the problem of finding a point contained in the largest number of halfcircles
on the unit circle S1. Our main goal in this section is to present a reduction from Tukey

7

H+

H−

q∗

q# ∩H+

q# ∩H−

Figure 4: Computing the Tukey depth of a point in Rd reduces to two MaximumFeasible-
Subsystem problems in Rd−1.

depth to the MaximumFeasibleSubsystem (MFS) Problem. This will allow us to apply
known algorithms for the MFS problem to give theoretically efficient algorithms for Tukey
depth in R3 and R4. The reduction to MFS will also prove useful in the next section when
we discuss the general dimensional case.

The reduction in Rd proceeds as follows: Each point q ∈ S defines an open halfsphere
q∗ = {v ∈ Sd−1 : v · q < 0}. That is, all vectors in q∗ are the inner normals of halfspaces
that contain p but do not contain q. Thus, the problem of determining the Tukey depth of
p reduces to the problem of finding the point contained in the largest number of halfspheres
in S∗ = {q∗ : q ∈ S}.

We observe that this problem can be solved by solving two MaximumFeasibleSub-
system problems in Rd−1. Refer to Figure 4. Each open halfsphere q∗ ∈ S∗ is the in-
tersection of an open halfspace q# with Sd−1. Consider the intersection of q# with the
hyperplane H+ = {(x1, . . . , xd) : xd = 1}. By central projection, there is a bijection be-
tween points in Sd−1

+ and H+ and this bijection has the property that r ∈ Sd−1
+ is in q∗ if

and only if the projection of r is in q# ∩ H+. Thus, finding the point in Sd−1
+ contained in

the largest number of halfspheres is equivalent to finding a point in H+ contained in the
largest number of halfspaces. A similar statement holds regarding Sd−1

− using the hyperplane
H− = {(x1, . . . , xd) : xd = −1}. Finally, we observe that we do not need to consider solutions
on the equator Sd−1

0 because our input consists of open halfspheres.4

4A solution to the Tukey depth problem is obtained when we find a set n− k open halfspheres that have
a non-empty common intersection. The intersection of a finite set of open halfspheres is either an empty set
or a set with positive measure. Since Sd−1

0 has measure 0 any solution to the Tukey depth problem contains
points not in Sd−1

0 .

8

The above discussion shows that computing the Tukey depth of a point in Rd reduces
to two instances of the problem MaximumFeasibleSubsystem problem in Rd−1: Given
a set K of n halfspaces in Rd−1, find the subset K ′ of K of minimum cardinality such
that ∩(K \ K ′) is non-empty. (The set K ′ \ K is called a maximum feasible subsystem.)
The current best results for MaximumFeasibleSubsystem in small dimensions are due to
Chan [6]. Using two instances of his algorithm for MaximumFeasibleSubsystem in R2,
respectively, R3, and running them in parallel gives:

Theorem 3. The Tukey depth of a point p with respect to a set S of n points in R3 can be
computed in O(n log n+ k2 log n) time, where k is the value of the output.

Theorem 4. The Tukey depth of a point p with respect to a set S of n points in R4 can be
computed in O(n log n+ k11/4n1/4 logO(1) n) time, where k is the value of the output.

5 An Algorithm for Points in Rd

Finally, we consider the general case of point sets in Rd. In the previous section we showed
that computing the Tukey depth of a point p with respect to a set S of n points in Rd can
be reduced to two instances of MaximumFeasibleSubsystem in Rd−1. In this section we
give a fixed-parameter tractable [10] algorithm for MaximumFeasibleSubsystem that,
for any fixed value of the output, k, is polynomial in the dimension, d.

The algorithm uses linear programming as a subroutine in the following way: Given a
collection K of halfspaces in Rd−1, an algorithm for linear programming can be used to either

1. Determine a point p ∈ ∩K if such a point exists or,

2. report a subset B ⊆ K, |B| ≤ d, such that ∩B = ∅.
The set B reported in the latter case is called a basic infeasible subsystem. Standard combi-
natorial algorithms for linear programming, including algorithms for linear programming in
small dimensions [8, 11, 18, 19, 29, 30] as well as the simplex method (cf., [7]), can generate
a basic infeasible subsystem given an infeasible linear program. The details of finding a basic
infeasible subsystem using linear programming are discussed further in Appendix A.

Let BIS(K) denote a routine that outputs a basic infeasible subsystem of K if K is
infeasible, and that outputs the empty set otherwise. The following algorithm solves the
MaximumFeasibleSubsystem decision problem:

9

MFS(K, k)

1: {? determine if there exists K ′ ⊆ K, |K ′| ≤ k, such that ∩(K \K ′) 6= ∅ ?}
2: B ← BIS(K)
3: if B = ∅ then
4: return true
5: if k = 0 then
6: return false
7: for each h ∈ B do
8: if MFS(K \ {h}, k − 1) = true then
9: return true

10: return false
The correctness of the above algorithm is easily established by induction on the value of

k. The running time of the algorithm is given by the recurrence

T (n, k) ≤ LP(n, d− 1) + dT (n− 1, k − 1) ,

where LP(n, d) denotes the running time of an algorithm for finding a basic infeasible system
in a linear program with n constraints and d variables. This recurrence readily resolves to
O(dk LP(n, d− 1)). Using this as a subroutine for Tukey depth computation we obtain our
final result:

Theorem 5. The Tukey depth of a point p with respect to a set S of n points in Rd can be
computed in O(dk LP(n, d− 1)) time, where k is the value of the output and LP(n, d) is the
time to solve a linear program with n constraints and d variables.

Remark: The algorithm described above is closely related to Matoušek’s algorithm for
MaximumFeasibleSubsystem which, in our setting, has a running time of O(kd LP(n, d))
[17]. In the language of fixed-parameter tractability, the primary difference between the two
algorithms is that Matoušek’s algorithm explores the search tree in breadth-first order and
uses a dictionary to ensure that identical subtrees are not explored, whereas the current
algorithm explores the search tree in depth-first order. The two algorithms can, of course,
be combined to obtain an algorithm with running time O(min{kd + dk}LP(n, d)).

Ackowledgement

Dan Chen, David Bremner, and Pat Morin are grateful to Diane Souvaine and the Rad-
cliffe Institute for hosting the Workshop on Computational Aspects of Statistical Data Depth
Analysis, July 7–10, 2006. In particular the work in Section 5 is the result of discussions
that began at the workshop.

References

[1] E. Amaldi and V. Kann. The complexity and approximability of finding maximum
feasible subsystems of linear relations. Theoretical Computer Science, 147:181–210,
1995.

10

[2] P. A. Beling and N. Megiddo. Using fast matrix multiplication to find basic solutions.
Theoretical Computer Science, 205(1-2):307–316, September 1998.

[3] M. Ben-Or. Lower bounds for algebraic computation trees (preliminary report). In
Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC’83),
pages 80–86, 1983.

[4] G. S. Brodal and R. Jacob. Dynamic planar convex hull. In Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Science (FOCS 2002), pages 617–626,
2002.

[5] T. M. Chan. An optimal randomized algorithm for maximum Tukey depth. In Proceedigs
of the 15th ACM-SIAM Symposium on Discrete Algorithms, pages 423–429, 2004.

[6] T. M. Chan. Low-dimensional linear programming with violations. SIAM Journal on
Computing, 34:879–893, 2005.

[7] V. Chvátal. Linear programming. A Series of Books in the Mathematical Sciences. W.
H. Freeman and Company, New York, 1983.

[8] K. L. Clarkson. Las Vegas algorithms for linear and integer programming when the
dimension is small. Journal of the ACM, 42:488–499, 1995.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
McGraw Hill, 2nd edition, 2001.

[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer, 1998.

[11] M. E. Dyer. Linear time algorithms for two- and three-variable linear programs. SIAM
Journal on Computing, pages 31–45, 1984.

[12] C. C. Gonzaga. An algorithm for solving linear programming problems in O(n3L)
operations. In Progress in mathematical programming (Pacific Grove, CA, 1987), pages
1–28. Springer, New York, 1989.

[13] D. S. Johnson and F. P. Preparata. The densest hemisphere problem. Theoretical
Computer Science, 6:93–107, 1978.

[14] S. Langerman and W. Steiger. Optimization in arrangements. In Proceedings of the
20th Symposium on Theoretical Aspects of Computer Science, volume 2607 of Lecture
Notes in Computer Science, pages 50–61. Springer-Verlag, 2003.

[15] J. Matoušek. Computing the center of planar point sets. In J. E. Goodman, R. Pollack,
and W. Steiger, editors, Computational Geometry: Papers from the Special Year, pages
221–230. AMS, Providence, 1991.

11

[16] J. Matoušek. Reporting points in halfspaces. Computational Geometry: Theory and
Applications, 2:169–186, 1992.

[17] J. Matoušek. On geometric optimization with few violated constraints. Discrete &
Computational Geometry, 14:365–384, 1995.

[18] N. Megiddo. Linear time algorithms for linear programming in R3 and related problems.
SIAM Journal on Computing, 12:759–776, 1983.

[19] N. Megiddo. Linear programming in linear time when the dimension is fixed. Journal
of the ACM, 31:114–127, 1984.

[20] N. Megiddo. On finding primal- and dual-optimal bases. ORSA J. Comput., 3(1):63–65,
1991.

[21] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algo-
rithms. Prentice-Hall, 1998.

[22] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, New-York, 1985.

[23] E. Ramos. On range reporting, ray shooting, and k-level construction. In Proceedings of
the 15th ACM Symposium on Computational Geometry (SoCG 1999), pages 390–399,
1999.

[24] J. Renegar. A polynomial-time algorithm, based on Newton’s method, for linear pro-
gramming. Math. Programming, 40(1, (Ser. A)):59–93, 1988.

[25] C. Roos. An O(n3L) approximate center method for linear programming. In Optimiza-
tion (Varetz, 1988), volume 1405 of Lecture Notes in Math., pages 147–158. Springer,
Berlin, 1989.

[26] C. Roos and J.-Ph. Vial. A polynomial method of approximate centers for linear pro-
gramming. Math. Programming, 54(3, Ser. A):295–305, 1992.

[27] P. J. Rousseeuw and I. Ruts. Constructing the bivariate Tukey median. Statistica
Sinica, 8:827–839, 1998.

[28] I. Ruts and P. J. Rousseeuw. Computing depth contours of bivariate point clouds.
Computational Statistics and Data Analysis, 23:153–168, 1996.

[29] R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete
& Computational Geometry, 6:423–434, 1991.

[30] M. Sharir and E. Welzl. A combinatorial bound for linear programming and related
problems. In Proceedings of the 9th Symposium on Theoretical Aspects of Computer
Science, volume 5777 of Lecture Notes in Computer Science, pages 569–579. Springer-
Verlag, 1992.

12

[31] C. G. Small. A survey on multidimensional medians. International Statistics Review,
58:263–277, 1990.

[32] J. W. Tukey. Mathematics and the picturing of data. In Proceedings of the International
Congress of Mathematicians, volume 2, pages 523–531, 1975.

[33] P. M. Vaidya. An algorithm for linear programming which requires O(((m+n)n2 +(m+
n)1.5n)L) arithmetic operations. Math. Programming, 47(2, (Ser. A)):175–201, 1990.

[34] S. A. Vavasis and Y. Ye. Identifying an optimal basis in linear programming. Ann.
Oper. Res., 62:565–572, 1996. Interior point methods in mathematical programming.

A Computing a Basic Infeasible Subsystem

This appendix explains how, given an infeasible linear program, to find a basic infeasible
subsystem of that linear program. This routine is required as part of the algorithm for
solving MaximumFeasibleSubsystem described in Section 5.

For any matrix M , let MJ denote the set of rows indexed by J . Given a system of linear
inequalities Mx ≥ b, M ∈ Rm×d, a basic infeasible subsystem is a subset of {1 . . .m} such
that the system MIx ≥ bI is infeasible, and |I| ≤ d+ 1. We consider the standard first stage
simplex problem (see e.g. [7], p. 39). Let e denote the m-vector of all ones, c the length d+1
binary vector with exactly one one in the last position and let A = [Me]. We can write the
first stage LP for our system as

min cTx = xd+1

subject to (P)

Ax ≥ b

In the case of an infeasible system, the optimal value of this LP will be strictly positive. The
dual LP of (P) is

max bTy

subject to (D)

yA = c

y ≥ 0

In what follows, we generally follow the notation of [20], except that we interchange the
definitions of the primal and dual LPs. Define a basic partition (or just basis) (β, η) as a
partition of the row indices of A such that Aβ is nonsingular. For each basic partition, we
define a primal basic solution

x∗ = A−1
β bβ

and a dual basic solution
y∗ = cA−1

β

13

We say that a basis is primal feasible (resp. dual feasible) if x∗ is feasible for (P) (respectively
y∗ is feasible for (D)). It is a standard result of linear programming duality that a basis which
is both primal and dual feasible defines a pair (x∗, y∗) of optimal solutions to the primal and
dual LP’s; such a partition is called an optimal basis partition

In general LP algorithms (either directly in the case of Simplex type algorithms, or via
postprocessing using e.g. [20, 34, 2]) provide an optimal basis partition (β, η). Consider the
relaxed LP

min cTx

subject to (R)

Aβx ≥ bβ

It is easy to verify that an optimal basis partition for (P) is also primal and dual feasible
for (R). This implies that the system Mβx ≥ bβ is infeasible, and provides a basic infeasible
system. Using interior point algorithms (see [12, 24, 33, 25, 26]), a solution to the first
stage LP can be found O(m3L) time, where L is the number of bits in the input. Using
the algorithm of Beling and Megiddo [2], an optimal basis partition can be computed in
O(m1.594d) time (where the bound is based on the best known methods for fast matrix
multiplication).

14

