
Sigma-Local Graphs

Prosenjit Bose 1 Sébastien Collette 2 Stefan Langerman 3

Anil Maheshwari 1 Pat Morin 1 Michiel Smid 1

[jit,maheshwa,morin,michiel]@scs.carleton.ca
School of Computer Science, Carleton University, Canada

[sebastien.collette,stefan.langerman]@ulb.ac.be
Computer Science Department, Université Libre de Bruxelles, Belgium

Abstract

We introduce and analyze σ-local graphs, based on a definition of locality by Erick-
son [9]. We present two algorithms to construct such graphs, for any real number
σ > 1 and any set S of n points. These algorithms run in time O(σd n + n log n)
for sets in R

d and O(n log3
n log log n + k) for sets in the plane, where k is the size

of the output. In R
2, we also present a preprocessing method to find the graph

corresponding to any σ in linear time using O(n logO(1)
n) space and preprocessing

time.

Algorithms to find the minimum or maximum σ such that the corresponding
graph has properties such as connectivity, completeness, planarity, and no-isolated
vertex are presented, with complexities in O(n logO(1)

n). These algorithms can also
be used to efficiently construct the corresponding graphs.

1 Introduction

We consider here proximity graphs [12], also called neighborhood graphs. Such
graphs are defined on a finite set S of points in the plane used as the vertices
of the graph and there exists an edge between any two vertices if they are close
in some sense. The proximity can be measured for instance by the Euclidean
distance between these vertices, the distance to other vertices of the graph,
or the number of other vertices in a given neighborhood. Proximity graphs
are well-studied; a survey of Jaromczyk and Toussaint [12] discusses many of

1 Partially supported by NSERC.
2 Aspirant du F.N.R.S.
3 Chercheur qualifié du F.N.R.S.

Preprint submitted to Elsevier Science 18 August 2006

them, such as relative neighborhood graphs [12, 2], Gabriel graphs [10], β-
skeletons [14], and rectangular influence graphs [11]. The Θ-graphs [13, 20],
empty region graphs [7] and γ-neighborhood graphs [19] are other examples.

Among these, some definitions encompass families of proximity graphs. For
instance, the β-skeletons and the empty region graphs are parameterized fam-
ilies, in which the proximity definition depends on a constant β or on a geo-
metric shape respectively. Such families of graphs have proven useful because
the parameters for which some properties are ensured have been character-
ized [7, 14].

A graph is σ-local [9] if for every edge, there exists a ball around each of
its endpoints not containing any other vertex. If the distance between the
endpoints of an edge is denoted by d, the balls must have a radius of at least
d/σ. Erickson [9] used this definition of σ-locality as a realistic input model for
nonconvex polyhedra, and showed that Boolean combinations of two σ-local
polyhedra defined by n vertices in R

d can be performed in O(n logn) time.

Related to the work of Erickson, we introduce a new family of proximity
graphs. A σ-local graph is the maximal graph fulfilling the σ-local property
for all its edges. In other words, σ-local graphs are proximity graphs whose
proximity constraint is that two vertices are close if the edge between them
does not violate the definition of locality. We define this formally in the next
section.

We present algorithms to construct σ-local graphs for a given set of points.
Instead of characterizing the values of σ ensuring the existence of a given
property for every graph, we propose to determine the minimum or maximum
value of σ for the given property to be satisfied on a set of points.

Further to Erickson’s work, the study of σ-local graphs might prove useful
for the analysis of all kinds of objects defined in that realistic input model.
Another interesting aspect is that we give algorithms to find extremal graphs
with given properties. Previous work on proximity graphs consisted in the in-
troduction of one or more graph families, followed by different contributions
analyzing their properties and applications. A first step towards the definition
of customizable proximity graphs given a list of desirable properties was pro-
posed in [7]. This work extends that study: given a property, we adapt the
proximity constraint (i.e. the value of σ), to get a graph with that property.

In Section 2 we formally define σ-local graphs and give examples. Section 3
presents algorithms to construct σ-local graphs for a given σ. Different ap-
proaches are proposed depending on the value of σ. We also present a data-
structure which, given σ as a query, returns the corresponding graph efficiently.
Section 4 presents different algorithms to test if, given a set of points and a

2

value of σ, the corresponding σ-local graph is complete, if it contains isolated
vertices, if it is connected, and if it is plane when the edges are embedded as
straight line segments.

2 Definitions

The following definition was proposed by Jeff Erickson [9]. Let N(v) denote
the set of neighbors of a vertex v in the graph G.

Definition 1 A geometric graph G(S, E) is σ-local if its local stretch σ(G) is
less than a fixed constant σ and its global stretch Σ(G) is bounded from above
by a fixed polynomial in the number of vertices, where

σ(v) =

max
u∈N(v)

|uv|

min
u∈S\{v}

|uv|

σ(G) = max
v∈S

σ(v)

Σ(G) =
max
uv∈E

|uv|

min
uv∈E

|uv|

Intuitively, this means that in every σ-local graph, there exists an edge between
a pair of vertices (p, q) only if the two balls centered at p and q with radius
|pq|/σ are empty, and the maximum ratio between the length of any pair of
edges is bounded. This is equivalent to requiring that every edge pq satisfy
|pq| ≤ σ ·min(Wp, Wq), where the weight Wp of a point p is the distance to its
nearest neighbor.

Wp

Wq
p

q|pq| ≤ σ · min (Wp,Wq)

Fig. 1. Restriction in σ-local graphs.

We propose a new family of proximity graphs using the same definition of
locality:

3

Fig. 2. σ-local graphs for parameters 1 and 2.

Definition 2 Let S be a set of n points in R
d, and let σ > 1 be a real number.

The σ-local graph of S, denoted by Gσ(S), is defined to be the graph with vertex
set S and edge set E, where (p, q) is in E if and only if

(1) the ball with center p and radius |pq|/σ does not contain any point of
S \ {p} in its interior, and

(2) the ball with center q and radius |pq|/σ does not contain any point of
S \ {q} in its interior.

This corresponds to a proximity graph using the pair of balls centered at p
and q with radius |pq|/σ as an exclusion region [7] for the edge pq: there exists
an edge if and only if the exclusion region is empty.

3 Construction of Gσ(S)

In this section we show how to efficiently construct the σ-local graph given a
set of vertices and a value σ. We present two algorithms: one whose complexity
depends on σ, and a second whose complexity depends on the size of the graph.

3.1 Fixed σ

The first algorithm we present is valid for any real number σ > 1 and in any
(constant) dimension d. However if σd has the same order of magnitude as n,
the running time for the two-dimensional case is sub-optimal, and we propose
a more efficient solution for that case in the next subsection.

Given a separation ratio α, two point sets are well-separated if they can be
enclosed in two spheres of radius ρ such that the distance between them is at

4

least ρα. Given a set S of n points in R
d, a well-separated pair decomposi-

tion [6] is a set of m = O(αdn) pairs of sets of points {Ai, Bi} such that:

• For all p and q in S, there exists a unique value of 1 ≤ i ≤ m for which
p ∈ Ai and q ∈ Bi.

• For 1 ≤ i ≤ m, Ai and Bi are well-separated (and in particular, Ai and Bi

are disjoint sets for every i).

Let σ > 1 and consider a well-separated pair decomposition {Ai, Bi} with
separation ratio 2σ. We obtain the following lemma:

Lemma 3 Let (p, q) be an edge in Gσ(S), and let i be the index such that
p ∈ Ai and q ∈ Bi. Then both Ai and Bi are singleton sets.

PROOF. Assume that Ai contains a point r of S with r 6= p. Since the
sets Ai and Bi are well-separated, there exist balls C and C ′ having the same
radius ρ, such that Ai ⊆ C, Bi ⊆ C ′, and the distance between C and C ′ is at
least 2σρ. Since p and r are both contained in C, we have |pr| ≤ 2ρ. On the
other hand, since p ∈ C and q ∈ C ′, we have |pq| ≥ 2σρ. By combining these
inequalities, it follows that |pr| ≤ |pq|/σ, contradicting the fact that (p, q) is
an edge in the σ-local graph Gσ(S). 2

Note that the converse of this lemma is, in general, not true.

Theorem 4 The σ-local graph Gσ(S) for a point set S in R
d containing n

points and a given σ can be constructed in O(σd n + n log n) time.

PROOF. Using Vaidya’s algorithm [18], we compute, for each point p in
S, its weight Wp (the distance to its nearest neighbor). This can be done in
O(n log n) time in any constant dimension.

Using Callahan and Kosaraju’s algorithm [6], we compute a well-separated
pair decomposition {Ai, Bi}, 1 ≤ i ≤ m, for S, with separation ratio 2σ,
where m = O(σdn). This is achieved in O(n log n + σdn) time.

Then, we compute the index set I consisting of all indices i such that both Ai

and Bi are singleton sets, in O(σdn) time.

We initialize an empty edge set E. For each i ∈ I, let pi and qi be the points
of S such that Ai = {pi} and Bi = {qi}. We add the edge (pi, qi) to E if and
only if both Wpi

and Wqi
are at most |piqi|/σ. This step takes O(σdn) time.

The algorithm finishes by returning the graph G = (S, E), which, by Lemma 3
is the σ-local graph Gσ(S). 2

5

This also shows that the σ-local graph of S contains O(σdn) edges. This upper
bound is only meaningful if σd = o(n).

3.2 Large Fixed σ

We present here an algorithm which is efficient for point sets in the plane.

Theorem 5 The σ-local graph Gσ(S) for a point set S in R
2 containing n

points and a given σ can be constructed in O(n log3 n log log n+k) time, where
k is the number of edges in the resulting graph.

PROOF. For each point p ∈ S, we want to compute all q ∈ S, such that

(1) σWp ≥ |pq|, and
(2) σWq ≥ |pq|.

In this way, we obtain all edges (p, q) that are incident on p. Let p = (p1, p2)
and q = (q1, q2). We can rewrite the two conditions as:

(1) (p1 − q1)
2 + (p2 − q2)

2 ≤ (σWp)
2, and

(2) (p1 − q1)
2 + (p2 − q2)

2 ≤ (σWq)
2.

We denote by Sp,< and Sp,> the sets of points {q ∈ S|Wq ≤ Wp} and {q ∈
S|Wq > Wp}, respectively. We have to analyze two subproblems:

(1) Given p, find the points q in Sp,> such that (p1−q1)
2+(p2−q2)

2 ≤ (σWp)
2.

(2) Given p, find the points q in Sp,< such that (p1−q1)
2+(p2−q2)

2 ≤ (σWq)
2.

However, since the graph is undirected we do not have to consider both cases.
For every edge pq in Gσ(S), Wp ≥ Wq or Wp ≤ Wq. Thus, an edge will be
constructed when we consider its endpoint with lower weight.

To solve the above subproblem, we store the points of S at the leaves of a
balanced binary search tree, sorted by the values of Wp. At each node u of
this tree, we store a secondary data structure as outlined below.

Given a query point p, we want to find all q ∈ Sp,> such that (p1 − q1)
2 +

(p2 − q2)
2 ≤ (σWp)

2. We search in the tree for p. The search path partitions
the set of all q with Wp ≤ Wq into O(log n) canonical nodes. (These are the
right children of nodes on the path in which the path moves to the left child,
see Figure 3.)

For each canonical node u, we want to find all points q in the subtree of u
for which (p1 − q1)

2 + (p2 − q2)
2 ≤ (σWp)

2. These are all points q that are

6

p

Sp,< Sp,>

O(log n)

Fig. 3. Binary tree associated to the point set.

in the circle with center p and radius σWp. So we store at u a data structure
that supports these queries. Thus the time to construct the σ-local graph is
O(n log n) times the time for a circular range reporting query.

Aggarwal, Hansen, and Leighton [3] provide a data-structure that supports
circular range reporting queries in O(log n + k) time where k is the number
of items reported. The structure can be built in O(n log2 n log log n) time and
uses O(n logn) space. Since the primary tree has O(logn) levels and each level
encompasses a linear number of nodes, the total time complexity to construct
Gσ(S) is thus O(n log3 n log log n + k). 2

3.3 σ-Spectrum

Lemma 6 Given a point set S in R
2 and a constant c, we can find the smallest

real number σ such that Gσ(S) has n log3 n log log n edges in O(n logO(1) n)
time.

PROOF. First we consider the following decision problem: Given the set S,
and given σ, decide if Gσ(S) contains at least K edges. For this, we could
simply execute the algorithm used for Theorem 5 and stop as soon as we have
enough edges. But, since we will later use the parametric search technique [15],
we want to make sure that the algorithm can be run in the PRAM model, so
we propose the following alternative approach.

The circular range reporting query in two dimensions corresponds to a half-
space query in 3D [1]. Let S ′ be the 3D set corresponding to S; the procedure
described hereunder allows us to perform half-space queries on S ′.

Let T be a balanced tree that stores the points of S ′ at its leaves, in an arbitrary
order. With each node u of T , we store the Dobkin-Kirkpatrick hierarchy [8]
of the convex hull of all points in the subtree of u.

7

To answer a query, we are given a plane P in R
3 and want all points of S ′

that are below P . We start at the root of T . Using the Dobkin-Kirkpatrick
hierarchy, we can decide in O(log n) time if the convex polyhedron stored at
the root

(1) is completely above P : in this case, the query algorithm terminates,
(2) is completely below P : in this case, we report all points stored in the tree

and terminate,
(3) intersects P : in this case, we recursively query both subtrees of the root.

Let k be the number of points that are below P . The number of nodes of
T that are visited by the query algorithm is O(k log n). At each node, the
algorithm spends O(log n) time. Of course, the algorithm can terminate as
soon as K edges have been reported.

These queries can be solved in parallel: in case 3 of the query algorithm, we
use two processors. In other words, each time we branch in the tree, we use
an additional processor.

The decision problem (does Gσ(S) have at least K edges?) can be solved se-
quentially, in O((n+K) log2 n) time; it can be solved in parallel in O(logO(1) n)
time, using n + K processors and only algebraic predicates.

This immediately allows us to use the parametric search technique of
Megiddo [15] to find the smallest σ such that Gσ(S) contains at least
K = n log3 n log log n edges in time O(n logO(1) n). 2

Theorem 7 Using O(n logO(1) n) space and preprocessing time, we can com-
pute Gσ(S) for any set S of n points in R

2 and any σ in O(k) time, where k
is the number of edges in the resulting graph.

PROOF. We can preprocess efficiently σ-local graphs because the size of the
graph is a positive monotone function of σ: if σ grows, edges are added and
never removed.

We first note that if the output has more than n log3 n log log n edges, we can
construct the graph using the algorithm given in Theorem 5.

The preprocessing phase consists in constructing a graph with n log3 n log log n
edges, with the method given by Lemma 6. We sort the edges of the resulting
graph with respect to σ and we store the edges in a list. All of this can be
achieved in O(n logO(1) n) time.

To answer a query, we simply output every edge in the list up to the corre-
sponding value of σ. 2

8

4 Testing Properties of Gσ(S)

In this section, we test properties of σ-local graphs for a given value of σ and
point set S. We also propose algorithms to find the threshold value of that
parameter to satisfy the given property on that particular set.

4.1 Completeness

A first simple question when we deal with different values of σ is to check
whether or not the resulting graph is complete.

Let NN(p) and FN(p) denote the nearest and the farthest Euclidean neighbor
of a vertex p in the set S.

Lemma 8 The graph Gσ(S) is not the complete graph on S if and only if
there is a point p in S such that |pFN(p)|/|pNN(p)| ≥ σ.

PROOF. Assume that p is a point in S such that |pFN(p)|/|pNN(p)| ≥ σ.
Let q = FN(p). Then NN(p) is contained in the ball with center p and radius
|pq|/σ. Thus, (p, q) is not an edge in Gσ(S) and Gσ(S) is not the complete
graph.

To prove the converse, assume that (p, q) is not an edge in Gσ(S). Then

|pNN(p)| ≤ |pq|/σ ≤ |pFN(p)|/σ,

or
|qNN(q)| ≤ |pq|/σ ≤ |qFN(q)|/σ.

Hence, p or q satisfies the condition in the lemma. 2

This lemma implies that the largest value of σ for which Gσ(S) is not the
complete graph on S is given by

σ = max
p∈S

|pFN(p)|

|pNN(p)|
.

Theorem 9 Given a set of n points in R
2, the maximum σ such that the

corresponding σ-local graph is not complete can be found in O(n log n) time.

PROOF. The nearest and farthest neighbor graph of the set of points can be
constructed in O(n log n) time [17]. We find the maximum of the ratio |pFN(p)|

|pNN(p)|

9

for every point of S in linear time, and using Lemma 8 we know that this gives
us the largest value of σ such that Gσ(S) is not complete. 2

4.2 No Isolated Vertex

A natural question when we want to analyze a graph is to determine if vertices
are always part of connected components, or if they are isolated. Given a set
of vertices, another view of the problem is to find the smallest σ such that the
corresponding graph contains no isolated vertex.

Theorem 10 Given a set S of points in R
2, the σ-local graph Gσ(S) with

lowest σ such that Gσ(S) contains no isolated vertex can be constructed in
O(n log5 n) time.

PROOF. To find the smallest value of σ, we look at all the vertices and
determine which value of σ connects them to another vertex in the graph.
Therefore, we use an algorithm similar to the one used for Lemma 6. As we
want to check if some vertex is isolated, we must consider both ends of each
edge and not only the endpoint with lowest weight as we did in Theorem 5
and Lemma 6.

As above, we use a binary search tree to store the vertices according to their
weights. Then, we check for every vertex p if it is connected to any other
vertex, either in Sp,> or Sp,<.

For the vertices in Sp,>, we use the same method which consists in circular
range queries. We do not need to effectively report all points, we just want to
ensure that at least one of the vertices is connected.

For the vertices in Sp,<, the edge q leading to the lowest σ is the closest from p,
as we know that σ only depends on the distance |pq| and Wp. Given a Voronoi
diagram of the point set Sp,<, finding the optimal q is a point location problem:
by definition it is the point whose Voronoi cell contains p.

In the preprocessing phase, we construct the binary tree and associate to
each internal node the Voronoi diagram of the set it represents. The depth of
the tree is O(log n), and at each level, the canonical sets represent exactly n
vertices divided in disjoint sets.

As the Voronoi diagram of n points can be computed in O(n log n) time, the
total complexity to construct the n Voronoi diagrams associated to the internal
nodes is thus O(n log2 n): for each level in the tree, the complexity is bounded
by O(n logn), and there are O(logn) levels.

10

After the preprocessing phase, we apply the same process for every point p in
S: for every node in the path from the root to the leaf of the tree representing
that point, we check if there is an edge from p to any item of S<,p or S>,p. The
length of the path is in O(log n) and for each node, we must either locate p
in a Voronoi diagram in O(logn) time or perform the circular range query. In
conclusion, we can decide if a point is connected to p in O(log2 n) time for a
given σ.

To find the lowest σ, we use the parametric search technique of Megiddo [15].
The Voronoi diagrams do not depend on σ. Thus, the complete algorithm will
be as follows: construct the tree and the Voronoi diagrams in O(n log2 n) time;
compute in parallel the optimal value for σ by querying for each point if it is
isolated.

The canonical sets have size O(n log n) in total, and we run our parallel algo-
rithm on P = n processors. The sequential time Ts, that is the time to check
if there is an isolated vertex for a given σ, is O(n log2 n); the parallel time Tp

is O(log2 n). The total complexity to find the minimum value of σ such that
there is no isolated vertex is then O(PTp + TpTs log P), which enumerate to
O(n log5 n). 2

4.3 Connectedness

Next we consider the problem of finding the minimum value of σ such that
Gσ(S) is connected. For this, we apply ideas used in Boruvka’s algorithm [5, 16]
for finding the minimum spanning tree.

Theorem 11 Given a set S of n points in R
2, the connected σ-local graph

with minimum σ can be constructed in O(n log7 n) time.

PROOF. The algorithm consists of maintaining a list of all the components
already identified and to update σ such as to connect progressively every
component to others. We begin by computing the nearest neighbor of every
vertex in a specific metric: the distance between any pair of vertices is the
minimum value of σ such that the pair is connected. This gives, for each
vertex, the first vertex to which it connects as σ grows; thus we have an initial
value for σ and a list of at most n/2 different components.

Then we proceed as follows: we put every vertex in the leaves of a binary
tree, sorted by component number; the internal nodes of that tree represents
(sub-)sets of components. Each internal node represents a set of vertices for
which we create a secondary data structure as described in Subsection 4.2,
with Voronoi diagrams and support for circular range queries.

11

In the binary tree, we can easily find sets covering every vertices in all com-
ponents but one: from the root of the binary tree, there is a left-most and a
right-most path (see Figure 4), leading respectively to the first and the last leaf
of a component. The left (right resp.) children of the internal nodes on the left-
(right- resp.)most path represents covering sets for all the other components.

Ci

Ci,< Ci,>

O(log n)

︸︷︷︸

CmC1

Fig. 4. Binary tree associated to the components.

Then we find the smallest σ which connects one component to any other com-
ponent by running the no-isolated algorithm for every point in that component
on the points in the other components.

This reduces the number of components, and we continue up to the point
where there is only one component; we can then return the lowest σ.

As the number of components is reduced each time by a factor of two, we repeat
the no-isolated vertex algorithm O(log n) times, on O(log n) sets covering every
component but the current one.

The time to initially construct and maintain the structure is dominated by
the search of the optimum value; the complexity is thus O(n log7 n). 2

5 Planar Embedding

The last property we analyze is whether the σ-local graph obtained is a planar
embedding. The following algorithm allows us to find the largest value of σ
for which this is the case, and also constructs the corresponding graph in the
mean time.

Theorem 12 Given a set S of n points in R
2, the planar σ-local graph with

maximum σ can be constructed in O(n logO(1) n) time.

12

PROOF. Using Lemma 6, we can construct in O(n logO(1) n) time a graph
containing more than 3n − 6 edges. We sort these edges by increasing weight
in O(n logO(1) n) time and keep the 3n − 6 first ones. This gives us an upper
bound on the value of σ, as a planar graph has 3n − 6 edges or less.

Given a set of n line segments in R
2, the algorithm proposed by Bentley and

Ottmann [4] returns all pairs of segments intersecting each other in O((n +
k) log n) time, where k is the number of intersections in the set. The same
algorithm can be used to check if at least one segment intersects with any
other, by stopping as soon as it finds one intersection; this can be achieved in
O(n log n) time.

We do a binary search on the size s of the set of edges (initialized to 3n− 6),
using Bentley-Ottmann to check if the first s edges in sorted order intersect or
not. This gives a time complexity of O(n log2 n) to determine the maximum
value of σ corresponding to a planar σ-local graph. 2

6 Future Work

We gave algorithms to construct and check different properties of σ-local
graphs. Other properties that we would like to study include checking whether
the resulting graph is a triangulation (or contains a triangulation as subgraph)
for a given σ, and what is the minimum value of σ for this to be true.

Generalization to the kth order, where there is an edge between two vertices if
there are less than k other points of the set in each influence ball seems feasible
by determining the kth nearest neighbor of each vertex and using the distance
to that point as weight. Note however that some care must be taken with our
different proofs: for instance Lemma 3 does not hold anymore, as Ai and Bi

could contain k items, and every k2 pairs of items should be considered.

Acknowledgments

This work was initiated during the Carleton-Eindhoven Workshop on Compu-
tational Geometry 2005 organized by Prosenjit Bose and Mark de Berg. We
would like to thank all participants who contributed in one way or another to
the completion of this work.

13

References

[1] P. Agarwal. Range searching. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 36, pages
809–837. CRC Press LLC, Boca Raton, FL, 2004.

[2] P. Agarwal and J. Matoušek. Relative neighborhood graphs in three
dimensions. Computational Geometry: Theory and Applications, 2:1–14,
1992.

[3] A. Aggarwal, M. Hansen, and T. Leighton. Solving query-retrieval prob-
lems by compacting Voronoi diagrams. In STOC ’90: Proceedings of the
twenty-second annual ACM symposium on Theory of computing, pages
331–340, New York, NY, USA, 1990. ACM Press.

[4] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting
geometric intersections. IEEE Transactions on Computers, C-28(9):643–
647, 1979.

[5] O. Boruvka. O jistem problemu minimalnim. Prace Moravske
Prirodovedecke Spolecnosti 3, pages 37–58, 1926.

[6] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential
fields. Journal of the ACM, 42(1):67–90, 1995.

[7] J. Cardinal, S. Collette, and S. Langerman. Region counting graphs.
In Proceedings of the European Workshop on Computational Geometry
(EWCG05), 2005.

[8] D. Dobkin and D. Kirkpatrick. Fast detection of poyhedral intersection.
Theoretical Computer Science, 27:241–253, 1983.

[9] J. Erickson. Local polyhedra and geometric graphs. Computational Ge-
ometry: Theory and Applications, 31(1-2):101–125, 2005.

[10] K. Gabriel and R. Sokal. A new statistical approach to geographic vari-
ation analysis. Systematic Zoology, 18:259–278, 1969.

[11] M. Ichino and J. Sklansky. The relative neighborhood graph for mixed
feature variables. Pattern Recognition, 18:161–167, 1985.

[12] J. Jaromczyk and G. Toussaint. Relative neighborhood graphs and their
relatives. Proceedings of the IEEE, 80(9):1502–1571, 1992.

[13] J. Keil and C. Gutwin. Classes of graphs which approximate the com-
plete Euclidean graph. Discrete and Computational Geometry, 7(1):13–
28, 1992.

[14] D. Kirkpatrick and J. Radke. A framework for computational morphol-
ogy. Computational Geometry, pages 217–248, 1985.

[15] N. Megiddo. Applying parallel computation algorithms in the design of
serial algorithms. J. ACM, 30(4):852–865, 1983.

[16] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

[17] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. Wiley Series in Proba-
bility and Statistics. John Wiley & Sons Ltd., Chichester, UK, 2nd edi-

14

tion, 2000.
[18] P. M. Vaidya. An O(n log n) algorithm for the all-nearest neighbors prob-

lem. Discrete & Computational Geometry, 4:101–115, 1989.
[19] R. Veltkamp. The γ-neighbourhood graph. Computational Geometry:

Theory and Applications, 1:227–246, 1992.
[20] A. Yao. On constructing minimum spanning trees in k-dimensional spaces

and related problems. SIAM Journal on Computing, 11(4):721–736, 1982.

15

