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Abstract

A popular manufacturing technique is clamshell casting, where liquid is poured into a cast
and the cast is removed once the liquid has hardened. We consider the case where the object to
be manufactured is a simple polygon with n vertices in the plane. The cast consists of exactly
two parts and is removed by a rotation around a point in the plane. The following two problems
are addressed: (1) Given a cast and a center of rotation r in the plane, we determine in O(n)
time whether there exists a partitioning of the cast into exactly two parts, such that one part
can be rotated clockwise around r and the other part can be rotated counterclockwise around r
without colliding with the interior of the polygon. (2) An algorithm is presented to find all the
points in the plane that allow a cast partitioning as described above. For convex polygons, an
algorithm with running time O(n) is presented. For simple polygons, the algorithm’s running
time becomes O(n?).

1 Introduction

The problem of whether a given object modeled by a polygon can be manufactured using the casting
process is a well-known problem in computational geometry. In fact, the problem is discussed in
Chapter 4 of the text book by de Berg et al. [7]. The following overview of related problems is
not extensive. For a detailed discussion of problems related to manufacturing processes considered
in computational geometry, the reader is referred to Bose [3], Bose and Toussaint [6], and the
Handbook of Discrete and Computational Geometry by Goodman and O’Rourke [10].

The geometric setting of clamshell casting is considered in two dimensions. In the following, we
explain what we mean by clamshell casting.

Assume that we wish to manufacture an object modeled by a simple polygon P with n vertices.
Let the boundary of P be the cast of P. Two problems are addressed. First, given a center of rotation
r in the plane, determine whether there exists a partitioning of the cast into exactly two parts, such
that one part can be rotated clockwise around r and the other part can be rotated counterclockwise
around r without colliding with the interior of P. We present an algorithm to solve this problem
with running time O(n). Second, an algorithm is presented to find all the points in the plane that
allow a cast partitioning as described above. The algorithm’s running time for convex polygons is
O(n). For simple polygons with reflex vertices, the algorithm requires time O(n?). We provide an
Q(n?) lower bound thereby proving the optimality of the algorithm.
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There exists a close relationship between rotational casting and translational casting. Let P
denote a polygon in 2-dimensional space and let » denote the center of rotation used to rotationally
cast P. Assume that P and r are given in a polar coordinate system with origin ». In polar
coordinates, every point is described by an angle ¢ and the distance d from the origin. Transform
the coordinate system into a cartesian coordinate system, such that the z-axis describes the angle
¢ and the y-axis describes the distance d. Considering this transformed system between = = 0 and
x = 27 shows the transformed polar coordinate system. Every point of the cast of P moves along
a straight line when the cast is removed. This means that rotational casting becomes translational
casting. It remains to analyze the shape of the transformed polygon P. Without loss of generality
(since everything can be rotated), assume that P does not contain vertical edges. Furthermore,
assume that r is not contained in the interior of P, since otherwise, P could not be cast using r
as center of rotation. The transformation of an edge e of P is in essence a curve describing the
distance of points on the edge to the origin. The distance from an edge to a point is non-linear
and can not be described using an algebraic curve, but trigonometric functions are necessary [2].
Since r is not contained in the interior of P, the transformed polygon P is topologically equivalent
to P and its boundary consists of piecewise non-algebraic curves. Considering rotational casting of
a polygon P is equivalent to considering translational casting of the transformed polygon P. This
relationship between rotational casting and translational casting extends to three dimensions.

To our knowledge, this close relationship between rotational casting and translational casting
has not previously been mentioned or used to obtain algorithms to rotationally cast polygons or
polyhedra. None of the algorithms surveyed in the following can easily be extended to handle
translational castability of 2-dimensional objects bounded by piecewise non-algebraic curves.

Rosenbloom and Rappaport [16] consider an object modeled by a simple polygon with n ver-
tices and they define the cast of this object as the boundary of the polygon. They published al-
gorithms to solve two related problems. The first algorithm determines in time O(n) whether the
cast can be partitioned into exactly two pieces, such that both pieces can be removed from the
manufactured object by translation without breaking the object or the cast. To solve this problem,
an important link between castability and monotonicity of a simple polygon is established. The
algorithm that solves this problem uses the algorithm developed by Preparata and Supowit [15]
that determines in O(n) time whether a polygon with n vertices is monotone. The second algorithm
determines in time O(nlogn) whether the cast can be partitioned into two pieces by cutting the
cast along a line, such that both pieces can be removed from the manufactured object by translation
without breaking the object or the cast. If this is possible, the object can be manufactured the fol-
lowing way: the cast is cut into two pieces and the two pieces are put on their sides and filled with
liquid. Once the liquid has hardened, the cast is removed by translation and the two manufactured
pieces are glued together. This way of manufacturing an object is called sand-casting.

Different approaches exist to examine the three-dimensional version of the casting problem,
where the object to be manufactured is modeled by a polyhedron of arbitrary genus and the poly-
hedron’s boundary is used as cast. Ahn et al. [1] determine whether the cast can be partitioned
into exactly two pieces, such that both pieces can be removed from the manufactured object by
translations in opposite directions without breaking the object or the cast. Bose et al. [4] con-
sider an object modeled by a simple polyhedron and use the polyhedron’s boundary as cast. They
determine whether the object can be manufactured by sand-casting.

This paper is organized as follows. Section 2 introduces the notation and preliminaries used
throughout this paper. Section 3 discusses the problem of finding a partitioning of a given cast



based on a given point of rotation, and Section 4 discusses the problem of finding all of the points
in the plane that allow a valid partitioning of the cast. Finally, Section 5 concludes and gives ideas
for future work.

2 Preliminaries

Let P be a simple polygon in the plane with n vertices and let int(P) and 0P denote the interior
and boundary of P, respectively, so that P = int(P) U OP. The boundary is also called the cast
of P. The edges of P are oriented in counterclockwise order such that int(P) is located to their
left. Parallel adjacent edges are not allowed, since this can be easily avoided by merging the two
adjacent parallel edges. The aim is to rotationally remove the cast of P in two pieces. We specify
below precisely what this means.

Definition 1. Let » and p be points in the plane. Denote the circular arc with center » and angle
« starting at p winding in clockwise (cw) or counterclockwise (ccw) direction by cwarc(r, p, o) or
ccware(r, p, a) respectively. An edge e of P is removable in cw orientation with respect to r if

Ja > 0 such that ¥V p on e : cwarc(r,p,a) Nint(P) =0
and removable in ccw orientation with respect to r if
3« > 0 such that ¥ p on e : ccwarc(r, p,a) Nint(P) = (.

Then, we call the cw or ccw orientation a valid orientation for cast removal for e with respect to
r respectively, and we call r a valid center of rotation for e. Figure 1 illustrates the definition of
castability for edges.
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Figure 1: The edges e; and e4 are removable in cw orientation with angle o and ccw orientation with
angle 3 with respect to r respectively.

Definition 2. Let r be a point in the plane. A polygon P is rotationally castable with respect to r,
if OP can be partitioned into exactly two connected chains, such that all edges of one chain are
removable in cw orientation with respect to r and all edges of the other chain are removable in ccw
orientation with respect to r.



Note that the partitioning of the chain is not necessarily at vertices of P. Henceforth, unless
stated otherwise, by castable, we will mean rotationally castable. We now outline a key property
that characterizes all locations from which an edge is removable.

For an edge e € 9P with incident vertices a and b, let n.(a) denote the line perpendicular to e
passing through a. The line n.(a) divides the plane into two half planes and the open half plane
containing b is denoted by n. (a) and the open half plane that does not contain b is denoted by
n. (a). The supporting line [(e) of e divides the plane into two half planes. Denote the open half
plane located to the left of ¢ when traversing P in ccw orientation by [*(e) and the open half plane
located to the right of e when traversing P by [~ (e), see Figure 2. The closure of an open set S is
denoted by cl(S).

I*(e) [~ (e)
ne (b)
Ne(b
’ ng (b) .
ng (a)
a ne(a)
n. (a)

Figure 2: The half planes associated with an edge e.

Lemma 1. Let e be an edge of P and denote the two vertices incident to e in ccw order by a and b. For
the orientation for cast removal of e, the following four cases are possible:

1. The edge e is removable from the cast using a cw rotation around r, if and only if r € cl(n_ (a)).
2. The edge e is removable from the cast using a ccw rotation around r, if and only if r € cl(n_ (b)).

3. The edge e needs to be partitioned into two parts at the orthogonal projection of r on e, if and
only if r € nt (a) Nnt(b) Ncl(l™ (e)). One part of e is removable using a ccw rotation and the
other one using a cw rotation around r. Let r* be the orthogonal projection of r on e. Denote
the edge with incident vertices a and r* by ey and the edge with incident vertices r* and b by e,
respectively. The edge e is removable using a ccw rotation around r and es is removable using a
cw rotation around r.



4. The edge e is not removable from the cast, if and only if r € n} (a) Nnt(b) NIt (e).

Proof. Consider that every point p of e moves on cwarc(r, p, &) or ccwarc(r, p, «) when rotated by an
angle o around r. Denote the vector from p to r by pi and the vector pi rotated in ccw orientation
around 90° by pi*. For any p not incident to the perpendicular projection of r on e, infinitesimal
movements along cwarc(r, p, ) or ccwarc(r, p, «) correspond to infinitesimal movements along the
vector pi or —pi* respectively. Hence, only translations need to be considered.

Let p be an arbitrary point in the interior of e. There exists an open disk b with positive radius
centered at p with the property that exactly half of b is contained in int(P) and exactly half of b is
contained in the exterior of P. Denote the ray starting at p propagating in direction - by ¢* and
denote the ray starting at p propagating in direction —pi* by ¢~

Let r € cl(n_ (a)) and let p be an arbitrary point in the interior of e. The intersection b N ¢*
is located completely outside of int(P). Hence, p can move infinitesimally along pi without
penetrating int(P). Infinitesimal movements along pi correspond to infinitesimal movements
along cwarc(r,p,«) and hence, 3 o > 0 such that ¥ p on e : cwarc(r,p,a) Nint(P) = (. The
intersection b N ¢~ is completely contained in int(P) U p and hence, p can not move infinitesimally
along —pi- without penetrating int(P). Since infinitesimal movements along —pi* correspond to
infinitesimal movements along ccwarc(r, p, ), there isno o > 0 such that V p on e : ccwarc(r, p, )N
int(P) = (). Hence, e is only removable using a cw rotation around r if r € cl(n_ (a)).

Let r € cl(n_ (b)) and let p be an arbitrary point in the interior of e. The intersection b N ¢~
is located completely outside of int(P). Hence, p can move infinitesimally along —pi-- without
penetrating int(P). Infinitesimal movements along —pit correspond to infinitesimal movements
along ccwarc(r,p,«) and hence, 3 a > 0 such that ¥ p on e : ccware(r,p, ) N int(P) = (. The
intersection b N ¢ is completely contained in int(P) U p and hence, p can not move infinitesimally
along pi-- without penetrating int(P). Since infinitesimal movements along pi— correspond to
infinitesimal movements along cwarc(r, p, @), there is no a > 0 such that V p on e : cwarc(r, p, a) N
int(P) = (). Hence, e is only removable using a ccw rotation around r if r € cl(n_ (b)).

If r € nt(a) Nnt(b) Necl(l”(e)), e is divided into two edges at the orthogonal projection r* of
r on e. Denote the edge with incident vertices a and r* by e; and the edge with incident vertices
r* and b by e respectively. As r € cl(ng, (r*)) and r € cl(ng,(r*)), e1 is only removable using a ccw
rotation around r and e, is only removable using a cw rotation around r.

If r € nt(a) Nnt(b) NI*(e), the orthogonal projection r* of r on e can not be rotationally
removed from the cast. This means, there is no o > 0 such that cwarc(r,r*, «) Nint(P) = () or
ccwarce(r,r*, ) Nint(P) = () respectively. Therefore, e is not removable with respect to 7.

This determines the removability of e depending on the location of r in the plane. Hence, the
four statements of Lemma 1 follow directly. O

3 Decision Problem

In this section, we address the question of whether a polygon is castable with respect to a given
point of rotation and present an algorithm that solves the problem in linear time.

Assume that a polygon P and a center of rotation r are given. The aim is to determine whether
P is castable with respect to r. If P is castable with respect to r, the two points on 9P, where the
cast is cut, need to be found.



Definition 3. A near point ¢ with respect to r is defined as ¢ € 9P with the property that an
infinitesimal neighborhood of ¢ on 9P is completely outside of the open disk centered at r and
passing through c. This means there exists a disk b centered at ¢ with a positive radius, such that
all points ¢ € (OP Nb) \ c are outside of the closed disk centered at r and passing through c.

Hence, if ¢ is not a vertex, c is the orthogonal projection of » on an edge of P. Therefore, ¢
locally minimizes the distance between the cast and the center of rotation r.

Definition 4. A far point f with respect to r is defined as f € 9P with the property that an infinites-
imal neighborhood of f on 0P is completely contained in the closed disk centered at » and passing
through f. This means there exists a disk b centered at f with a positive radius, such that all points
q € OP Nb are completely contained in the closed disk centered at » and passing through f.

The point f is always a vertex of P that locally maximizes the distance between the cast and
the center of rotation r.

Definition 5. Let p € OP be a vertex of P or a point in the interior of an edge of P. If p is
located in the interior of an edge, split the edge into two edges at p. The valid orientation for cast
removal with respect to r is said to change at p if one of the edges adjacent to p is removable in cw
orientation and the other edge adjacent to p is removable in ccw orientation with respect to 7.

Lemma 2. The valid orientation for cast removal with respect to r changes at a point p € dP if and
only if p is either a near point or a far point with respect to r.

Proof. The proof consists of two parts. First, we show that the valid orientation for cast removal
with respect to r changes at p € JP if p is a near point or a far point with respect to r. At a far point
f, an infinitesimally small neighborhood of f is completely contained in the closed disk induced
by the circle b centered at r passing through f. Hence, there is a smaller circle concentric to b
that passes through two neighboring points of f. As this circle intersects the polygon twice, one
intersection point penetrates int(P) when rotated infinitesimally in cw orientation with respect to
r and the other intersection point penetrates int(P) when rotated infinitesimally in ccw orientation
with respect to r. Hence, it is not possible to remove the cast in the same orientation. Hence,
the valid orientation for cast removal changes at f. The proof is similar for near points where b is
infinitesimally enlarged. Again, the two intersection points of the enlarged circle with the polygon
can only be removed in different orientations with respect to r.

Second, the valid orientation for cast removal with respect to r changes at no other point but
a near point or a far point. Assume that the valid orientation for cast removal with respect to r
changes at p € 0P with p neither a far point nor a near point. Hence, the circle b centered at r
passing through p properly intersects P at p, since p neither locally maximizes nor locally minimizes
the distance between JP and r. If p is not a vertex of P, but situated in the interior of an edge e of
OP, e is split into two edges at p. Otherwise, p is a vertex of P and there exist exactly two edges
adjacent to p. Therefore, every point p € JP has two adjacent edges. As P is a simple polygon,
locally it is located completely to the left of the boundary defined by the two edges adjacent to
p. Hence, the valid orientation for cast removal with respect to » does not change at p, which
contradicts the initial assumption. Therefore, p must be either a near point or a far point for the
valid direction of cast removal with respect to r to change. O

Theorem 1. Given a center of rotation r, a polygon P is castable with respect to r if and only if there
exists exactly one near point ¢ with respect to r and exactly one far point f with respect to r on 9P.
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Proof. The proof consists of two parts. First, we show that P is castable with respect to r if there
exists exactly one near point ¢ and exactly one far point f with respect to r. If there exists exactly
one near point ¢ and exactly one far point f with respect to r, the point ¢ minimizes the distance
between 0P and r and f maximizes the distance between 0P and r. Hence, P is completely
contained in the closed annulus defined by the two concentric circles centered at r and passing
through ¢ and f respectively. The valid orientation for cast removal with respect to r can only
change at ¢ and f, and no other point € P (Lemma 2). Therefore, one part of the polygon can be
removed using a cw rotation and the other part can be removed using a ccw rotation if P is cut at
cand f.

Second, if P is castable with respect to r then there exists exactly one far point and exactly one
near point with respect to r. A castable polygon with respect to r consists of two cast parts, i.e.
there are exactly two points € 9P where the orientation of cast removal with respect to r changes.
By Lemma 2, this implies that there are exactly two near or far points € 9P. The extreme value
theorem implies that there is always at least one local minimum and one local maximum with
respect to the distance from r to OP (see Chapter 3 in [12]). Therefore, there must exist at least
one near point and one far point € 9P with respect to r. Hence, there is exactly one near point and
one far point with respect to r on a castable polygon with respect to r. O

Theorem 1 allows us to determine whether a polygon is castable given a center point r by
testing how many points p € JP are local extrema with respect to the distance between p and r.
The polygon is castable iff there is exactly one maximum and one minimum. To do this test in
practice, we establish the following observation:

Observation 1. For a simple polygon P and a point r in the plane, the number of points ¢ € OP
that locally minimize the distance between OP and r equals the number of points f € 9P that locally
maximize the distance between OP and r.

Observation 1 holds because P is a simple closed polygon. Hence, the function describing the
distance from r to 9P is continuous and there is always a local minimum between two local maxima
and vice versa for continuous functions (see Chapter 3 in [12]).

Hence, it is sufficient to consider local maxima to decide whether a polygon is castable given a
center point r. As each far point must be a vertex of P, one can test for multiple local maxima by
traversing the polygon’s vertices p and computing the distances between p and r. This takes time
O(n), if n denotes the number of vertices of P.

Theorem 2. Given a polygon P with n vertices and a center of rotation r in the plane, we can test in
O(n) time whether P is castable with respect to r.

4 Determining all valid regions for cast removal

In this section, the aim is to find all points r in the plane, such that a given polygon is castable with
respect to 7.

Definition 6. The union of all points r in the plane with the property that P is castable with respect
to r is the valid region for cast removal of P. The complement of the valid region is the invalid region
for cast removal of P.



The aim is to determine all valid regions in the plane for a given polygon P by partitioning the
plane into valid and invalid regions for cast removal. Once a query point r is given, it is possible
to determine whether r is a valid center of rotation for P by determining whether r is contained in
a valid or an invalid region for cast removal. We will see that convex polygons have a valid region
that differs significantly from the valid region of non-convex simple polygons.

4.1 Convex polygons

In this section, we consider convex polygons and show that it is possible to find all valid regions for
cast removal in linear time. The plane is partitioned into valid and invalid regions for cast removal
by constructing the envelope of an arrangement of half lines.

Lemma 1 implies that every edge ¢ with incident vertices ¢ and b given in ccw order on 9P
splits the plane into regions of different valid orientations for cast removal, see Figure 3.

CCW

b

BLACK REGION cw / cew

CW

Figure 3: An edge splits the plane into regions of different valid orientations for cast removal

Definition 7. Let e be an edge of P and denote the two vertices incident to e in ccw order by a and
b. The open strip nf (a) N n (b) NIT(e) is called the black region of e.

Note that the black region does not contain any valid centers of rotation r for which e is castable
(see Lemma 1, case 4).

Lemma 3. For a convex polygon P, int(P) is contained in the union of the black regions of the edges
of P.

Proof. Every point ¢ € int(P) has at least one near point ¢ € 9P with respect to ¢q. As P is convex
and as g € int(P), c is the orthogonal projection of ¢ on an edge e and not a vertex of P. Hence, ¢
is contained in the black region of e. O

Lemma 4. A convex polygon P is castable with respect to a center of rotation r if and only if r is not
contained in the union of all black regions of edges of P.

Proof. This proof consists of two parts. First, a convex polygon is not castable with respect to r if
r is contained in the union of all black regions of edges of P. If r is contained in the union of all



black regions, it is contained in the black region of at least one edge e. The edge e is therefore not
removable with respect to » by Lemma 1.

The second part is that P is castable with respect to r if r is not contained in the union of
all black regions of edges of P. Assume, r is outside of the union of black regions, and P is not
castable. Theorem 1 and the Extreme Value Theorem [12] imply that there are at least two far
points with respect to r. Denote the two far points by f; and f,. Two cases can occur: either
r € int(P) or r & int(P). If r € int(P), Lemma 3 ensures that P is contained in the black region
of at least one edge. Hence, r ¢ int(P) must hold. Since r ¢ int(P), it is possible to compute
two tangents from r to JP. Denote the two vertices where the tangents touch 9P by ¢; and ¢,
respectively. If a tangent touches 0P in more than one vertex, choose the vertex closest to r as t;
or t9, respectively. The two tangents decompose 0P into two chains, the lower chain contained in
the triangle T" with vertices t1, t2, and r and the upper chain not contained in 7'. Since P is convex,
no far point of P with respect to r can be on the lower chain. Hence, both f; and f, are on the
upper chain. There are two near points on P with respect to r, one on each chain connecting f;
and f,. Since both f; and f> are on the upper chain, there must be a near point ¢; with respect to
r on the upper chain between f; and f> (see Observation 1). Since P is convex and c; is on the
upper chain, ¢; can not be a vertex of P. Hence, c; is the perpendicular projection of » onto an
edge ¢ of P. Since e is on the upper chain and r projects orthogonally onto e, r is located to the
left of e. Therefore r € nt(a) NnS(b) N 1T (e), where a and b denote the vertices incident to e. This
means, r is contained in the black region of e. But this contradicts the initial assumption that r is
not contained in the union of all black regions of edges of P. Hence, P is only castable with respect
to r if r is outside of the union of black regions of edges of P. O

Lemma 5. The valid region for cast removal of a convex polygon P consists only of unbounded regions
in the plane.

Proof. Note that Lemma 4 implies that the complement of the union of black regions of edges
of a convex polygon P is the valid region for cast removal of P. Assume there exists a point r
in a bounded region such that P is castable with respect to . Then, r is contained in a region
bounded by the black regions of at least two edges e; and es of P and the convex polygonal chain
h connecting e; and e, that has r to its left, see Figure 4. Let p; and p> be the vertices e; N h and
esNh. The vertices p; and p» minimize the distance from r to e; and e respectively. As the function
describing the distance from r to 0P is continuous and as P is simply connected, there exists at
least one near point ¢ with respect to r on h. As r is located to the left of h and as A is convex, c is
located in the interior of an edge e with incident vertices a and b. Hence, r € n (a) Nnt(b) NIt (e),
i.e. r is contained in the black region of e. This contradicts the initial assumption and proves that
the valid region of P consists only of unbounded regions in the plane. O

Based on Lemma 4 and Lemma 5, we compute the boundary of the union of all black regions
of edges of P. For this, the notion of an envelope of n lines is defined.

Definition 8. A set of n lines in the plane induces a subdivision S of the plane. The envelope of the
n lines is the polygon formed by the bounded edges of all the unbounded regions of S [11].

Similarly, a convex polygon P and the half lines bounding the black regions of its edges induce
a subdivision S of the plane. Parallel half lines with the same orientation intersect at infinity and
are therefore considered to be bounded edges. The polygon formed by the bounded edges of all
the unbounded regions of S is called envelope of the arrangement induced by P.



Figure 4: Location of a point r in a bounded region.

Lemma 5 implies that all valid regions of P are contained in the complement of the envelope of
the arrangement induced by P.

Theorem 3. Given a convex polygon P with n vertices, a description of the valid regions for cast
removal of P has O(n) size and can be computed in O(n) time.

Proof. Using the algorithm of Keil [11], it is possible to compute the envelope of an arrangement
of n lines in O(n) time given that the lines are sorted according to their slope. This algorithm
can be modified to find the union of all black regions of edges of P by defining an arrangement
consisting of the half lines that bound black regions of edges. In this arrangement, the left and
the right envelopes are computed, and their union corresponds to the union of all black regions of
P. The modified algorithm first splits the polygon at the two points with minimum and maximum
y-coordinate. The right envelope is computed by starting at the lowest point of the polygon and
traversing it in clockwise order up to the highest point. For each edge e we traverse, denote the half
line in direction of the inner normal of e passing through the first vertex of e encountered during
the traversal by /; and the half line in direction of the inner normal of e passing through the second
vertex of e encountered during the traversal by I}, 1 <1i < s, s < n, see Figure 5. Denote by B; the
convex polygonal chain bounding the region below the half lines /; to /;, 1 < i < s, and by A; the
convex polygonal chain bounding the region above the lines I ; to I3, 0 < i < s — 1. Concatenate
Ay, for 1 <i < s—1 the boundary of A; N B;, B, and in case that Ay and Bj are disjoint the part of
P used to compute the right envelope. For a visualization of the result of this right envelope, refer
to Figure 5.

To compute the left envelope, traverse the polygon in ccw starting at the lowest point and
ending at the highest point. Define /; and [}, 1 < i < s,s < n identical to above for every edge of
P. Computing A; and B; in the same way as before and concatenating Ag, for 1 < i < s — 1 the
boundary of A; N B;, Bs, and in case that Ay and B, are disjoint the part of P used to compute
the left envelope yields the left envelope. Note that the only difference between this algorithm and
Keil’s algorithm is the use of two different sets of lines /; and [ to compute B; and A;, respectively.
Hence, only minor changes in Keil’s algorithm are required to perform these computations. As there
are 2n half lines already sorted by slope, this algorithm requires O(n) time.

Two planar regions are created, and if we imagine that parallel lines intersect at infinity, the
two regions are simply connected planar polygons. The algorithm by Finke and Hinrichs [9], that
computes the overlay of simply connected planar subdivisions in time linear in the size of the
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I3

Figure 5: Result of the right envelope algorithm (shown in fat)

output, is used to compute the union of those two regions. The algorithm assumes that the two
subdivisions are given in quad view data structure and changes that structure in a way that the
result represents the overlay of the two regions.

The size of the two envelopes F; and FEs is linear in the number n of vertices of the polygon
P, because it can be computed using Keil’s algorithm in O(n) time. As both envelopes ordered
in clockwise order are given, one can construct a quad view data structure in linear time. The
time required for Finke and Hinrichs’s algorithm is O(n + k), where n is the combined size of the
two polygons to be overlayed and k is the number of intersection points of F; and F». Lemma 5
guarantees that there are no unbounded valid regions in the overlay of E; and E». Hence, when an
edge of E; intersects an edge of F5, only one of the edges can have further intersection points with
E; or E, respectively. Therefore, the number of intersection points of F; and F5 is O(n) resulting
in an O(n) time algorithm. In the resulting subdivision, any region labeled as unbounded is a valid

region of P.
The combination of the two algorithms allows to find all valid regions for centers of rotations
for cast removal in O(n) time where n is the number of vertices of P. O

Corollary 1. A convex polygon P with n vertices can be preprocessed in O(n) time, such that for any
given point r, we can decide in O(logn) time if P is castable with respect to r.

Proof. Theorem 3 allows to find all valid regions for cast removal of P in O(n) time. Hence, in
O(n) time, the plane is preprocessed, such that every face of the planar subdivision induced by
black regions of P is labeled as valid or invalid region.

For any query point r, after O(n) preprocessing time, it is possible to determine the face of the
arrangement containing r in time O(logn) [13]. Once the face is known, we can determine in
constant time whether that face is contained in the union of black regions of P, i.e. whether r is a
valid center of rotation. O]

4.2 Simple polygons

In this section, we consider simple (not necessarily convex) polygons with n vertices and show that
it is possible to find all valid regions for cast removal in O(n?) time. If the aim is to report all valid
regions, this time bound is worst case optimal.
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Let r be a point in the plane. If the valid orientation for cast removal of a simple polygon P
changes with respect to r at a reflex vertex v € 9P, v penetrates int(P) when rotated infinitesimally
around r with arbitrary orientation. This yields the following observation:

Observation 2. A simple polygon P cannot be divided at one of its reflex vertices v unless the center
of rotation r is v. Hence, v cannot be a far point with respect to r and v can only be a near point with
respect to r if r = v.

Definition 9. Let v be a vertex of P and denote the two edges adjacent to v by e; and e,. The near
cone of v is defined as cl(ng, (v) N n,(v)) and denoted by NC'(v).

The near cone of v is the set of all points X € R? with the property that v is a near point with
respect to X, see Figure 6.

Definition 10. Let v be a vertex of P and denote the two edges adjacent to v by e; and e,. The far
cone of v is defined as n/, (v) NnZ, (v) and denoted by FC(v).

The far cone of v is the set of all points X € R? with the property that v is a far point with
respect to X, see Figure 6.

near cone

far cone

Figure 6: The near cone and the far cone of v.

Definition 11. The black region of a reflex vertex v is (NC(v) U FC(v)) \ v.

Note that Observation 2 ensures that the black region of v does not contain any valid centers of
rotation r that allow to remove v from the cast.

Lemma 6. For a simple polygon P, int(P) is contained in the union of the black regions of the edges
and the reflex vertices of P.

Proof. Every point p € int(P) has at least one near point ¢ € 0P with respect to p. If ¢ is the
orthogonal projection of p on the interior of an edge e, p is contained in the black region of e.
Otherwise, c is a reflex vertex and p is contained in the black region of c. O
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Lemma 7. A simple polygon P is castable with respect to a center of rotation r if and only if r is not
contained in the union of all black regions of edges and reflex vertices of P.

Proof. This proof consists of two parts. First, a simple polygon is not castable with respect to r if r
is contained in the union of all black regions of edges and reflex vertices of P. If r is contained in
the union of all black regions, it is either contained in the black region of at least one edge e or in
the black region of at least one reflex vertex v. Hence, either e or v can not be removed from the
cast.

Second, a simple polygon is always castable if r is not contained in the union of black regions
of its edges and reflex vertices. Assume that P is not castable with respect to r and that r is not
contained in the union of black regions of edges and reflex vertices of P. Hence, there are at least
two far points f; and f» on 9P with respect to r, see Theorem 1 and the Extreme Value Theorem
[12]. Note that neither f; nor f5 can be a reflex vertex as r is not contained in the black region of
any reflex vertex. Two situations are possible: either r € int(P) or r ¢ int(P). Lemma 6 ensures
that r ¢ int(P) as any point g € int(P) is contained in the union of black regions of edges and reflex
vertices of P. Denote the far point with smallest distance to r by f;. If this far point is not unique,
choose an arbitrary far point with smallest distance to r. Denote the circle centered at r passing
through f1 by c. In a local neighborhood of f;, P is contained in the interior of c. However, since
f2 is a far point on 9P with respect to r with greater or equal distance from r than f;, 9P intersects
c in at least one point not equal to f;. Find the first point ¢; of JP that intersects ¢ when starting
at f; and walking along 0P in ccw orientation. The polygonal chain starting at f; and ending at ¢;
splits ¢ into two regions. If r is contained in the region of ¢ located to the left of the polygonal chain
starting at f; and ending at ¢;, denote the polygonal chain by upper chain. Otherwise, find the first
point g2 of JP that intersects ¢ when starting at f; and walking along 0P in cw orientation. By the
Jordan Curve Theorem [14], the polygonal chain starting at ¢2 and ending at f; must be completely
contained in the region of ¢ located to the left of the polygonal chain starting at f; and ending at
q1. Furthermore, int(P) is contained in the region bounded by the polygonal chain starting at ¢
and ending at f; and by the polygonal chain starting at f; and ending at ¢;. Hence, r is contained
in the region of ¢ located to the left of the polygonal chain starting at ¢, and ending at f;. Denote
the polygonal chain starting at ¢» and ending at f; by upper chain. The points f1,q, and ¢; are
points that maximize the distance from the two polygonal chains considered above to r. Hence, by
Observation 1 there exists a near point ¢; on the upper chain. Since r is located in the region of ¢
located to the left of the upper chain, ¢; can not be a convex vertex. Hence, c; is either located on
an edge e of P or ¢; is a reflex vertex of P. If ¢; is located on an edge e, ¢; is the perpendicular
projection of r on e and therefore, r is contained in the black region of e. Otherwise, ¢; is a reflex
vertex that is a near point and therefore, r is contained in the black region of ¢;. Hence, r is either
contained in the black region of the reflex vertex ¢; or in the black region of the edge e. But this
contradicts the initial assumption that r is not contained in the union of all black regions of edges
and reflex vertices of P. Hence, P is only castable with respect to r if » is outside of the union of
black regions of edges and reflex vertices of P. O

Theorem 4. Given a simple polygon P with n vertices, a description of the valid regions for cast
removal of P has O(n?) size and can be computed in O(n?) time.

Proof. We preprocess the plane by constructing the full arrangement A of the (full) lines bounding
the black regions of edges and reflex vertices. A doubly-connected edge list of the arrangement of
n lines has complexity O(n?) and can be constructed in O(n?) time, see [8], Chapter 8. Once A
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is constructed, each face needs to be labeled as valid or invalid region for cast removal. For this
purpose, a boolean value is associated with every edge e and reflex vertex v of P that indicates
whether the current location is contained in the black region of e or v respectively. We start at
an arbitrary face f of A and test for each edge and reflex vertex of P whether it causes f to be
invalid. After testing, we set the boolean value of each edge and reflex vertex appropriately and
compute the number b of edges and reflex vertices that cause f to be invalid. Clearly, f is valid if
and only if b = 0. This computation takes O(n) time as every edge and reflex vertex of P needs to
be considered. Next, A is traversed in depth-first order on the graph induced by the vertices and
the edges of A. Each time, an edge ¢4 of A is crossed, we update both the boolean value of the
edge or reflex vertex of P that induces e4 and the counter b. This way, every face of A is labeled
in constant time a piece. The edge e4 and its incident vertices are valid regions for cast removal if
and only if one or more of e4’s adjacent faces is a valid region for cast removal. Hence, A can be
labeled in O(n?) time. O

Corollary 2. A simple polygon P with n vertices can be preprocessed in O(n?) time, such that for any
given point r, we can decide in O(logn) time if P is castable with respect to r.

Proof. Theorem 4 allows to find all valid regions for cast removal of P in O(n?) time. Hence, the
plane is preprocessed, such that every face of the planar subdivision induced by black regions of P
is labeled as valid or invalid region in time O(n?).

For any query point r, after O(n?) preprocessing time, it is possible to determine the face of
the arrangement containing r in time O(logn) [13]. Once the face is known, the label of the face
can be retrieved in constant time. Hence, determining whether r is a valid center of rotation for P
takes O(logn) time. O

We now examine the complexity of the valid regions for centers of rotation. In the best case,
i.e. in the case of a convex polygon, the number of valid regions for cast removal is O(n). The
number of valid regions can not be w(n?) as the complexity of an arrangement induced by O(n)
lines is O(n?). There exists a class of simple polygons where the number of valid regions is (n?).
This implies that the O(n?) time bound is worst case optimal if the aim is to report all valid regions
of cast removal for a simple polygon. We now outline the construction of the lower bound.

Consider a simple polygon P consisting of n = 3s—1 vertices located on two different polygonal
chains. Let s vertices of P be evenly distributed on the upper half of the unit circle. The coordinates
of those vertices are

(cos((i —1)¢1),sin((i —1)¢1)),i=1,...,s,
where ¢; = ;5. Hence, the vertices form a convex polygonal chain c;. All valid regions induced
by ¢; are cones with apex a on the unit circle and opening angle %, see Figure 7.

The second polygonal chain ¢ consists of 2s—1 vertices. Let s vertices of co be evenly distributed
on the arc of the circle with center (—%, 0) and radius 1 starting at 37” and ending at 215%. The
coordinates of those vertices are

<—;—|—cos (?—i—(i—l)@) ,sin (3277—1—(2'—1)@)) i=1,...,s,

where ¢y = ﬁ. Denote the vertices by vy, ..., vs and note that v; is not located in the interior

of the unit disk for i = 1,..., s. Define the vertices vg, vsy1 as

(—; + cos <327r - ¢>2> ,sin <327r - ¢2>> ) <—; + cos <327T + 8¢2> ; sin <327T + 5¢2>> )
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Figure 7: Approximation of half circle

respectively. Let s — 1 vertices of ¢, be defined as the intersections of the line passing through
v;—1 and v; with the line passing through v;1 and v;,2, where i = 1,...,s — 1. These vertices are
located on a circle. The polygonal chain ¢ consists of s — 2 reflex, s — 1 convex, and 2 boundary
vertices. Note that ¢y consists of sides of isosceles triangles, i.e. all the edges have the same length,
see Figure 8. Valid regions bounded by part of ¢ and two parallel half lines occur.

The two polygonal chains ¢; and ¢; can now be connected by two edges. This does not introduce
further reflex vertices to P, but only two black regions of the new edges. Those black regions have
no influence on further considerations. Each of the black regions induced by reflex vertices on ¢
induces a bounded valid region when intersecting the valid region induced by vertices located on
the arc of ¢; starting at 6 % and endmg at 5. Hence, there are at least (s — 2)| | bounded valid
regions. As n = 3s — 1, there are 32 L"HJ = Q(n?) bounded valid regions. Hence, the number of
valid regions for cast removal of a 51mp1e polygon is Q(n?). An example with s = 10 is shown in
Figure 9.
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5 Conclusion and Future Work

We have studied the problem of clamshell casting in two dimensions. An algorithm was developed
to solve the problem of determining whether a polygon with n vertices is castable with respect to a
given point in the plane with running time O(n). Furthermore, two algorithms were developed to
report all the valid centers of rotation for a given polygon in the plane. The running times of the
algorithms are O(n) for convex polygons and O(n?) for simple polygons in general and shown to
be worst-case optimal.

The following interesting related problems require further research.

e The extension of the algorithm to three dimensions has recently been published by Bose et
al. [5].

e The definition of clamshell casting only tests whether the cast of an object with piecewise
linear boundary can be opened by an infinitesimally small angle without breaking the object
or the cast. To physically manufacture the object, it is required that the cast can be opened
by a sufficiently large angle to remove the object from the cast without breaking the object
or the cast. This problem is difficult, since the object can be removed from the cast by an
arbitrary sequence of transformations.

e The boundary of the object is defined to be the cast. In case of rotations around infinitesimally
small angles, this model is sufficient. However, when considering larger angles of rotations,
the thickness of the cast has an influence on the maximum angle of rotation that does not
break the object or the cast. Hence, the cast needs to be assigned a thickness.
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Figure 9: Example with s = 10. (a) shows the polygon, (b) shows an enlargement of the polygonal
chain cs.
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