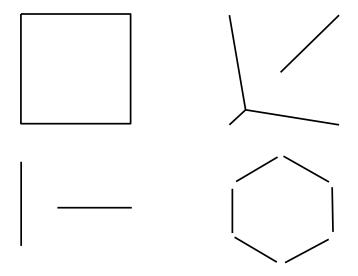
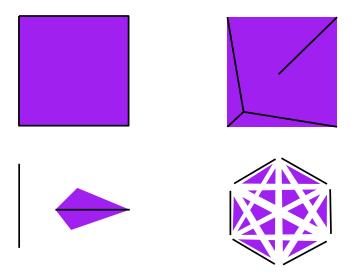
Computing Covers of Plane Forests

Luis Barba Alexis Beingessner Prosenjit Bose Michiel Smid

Given a set $T = \{T_1, T_2, \dots, T_m\}$ of m pairwise non-crossing geometric trees with a total of n vertices in general position. The *coverage* of these trees is the set of all points p in \mathbb{R}^2 such that every line through p intersects at least one of the trees.





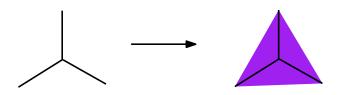
Beingessner and Smid 2012:

- ▶ Coverage can be computed in $O(m^2n^2)$ time
- ▶ Worst case example with coverage of size $\Omega(n^4)$.
- ▶ Problem is $\Theta(n^4)$

Is slowness a consequence of bad inputs being "contrived"? Optimization to be had in structure of "real" inputs?

Observations

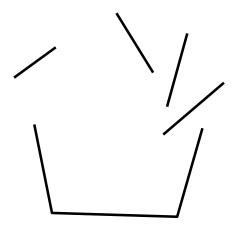
Coverage of a single tree is it's convex hull

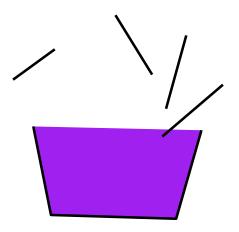


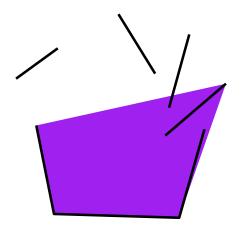
Observations

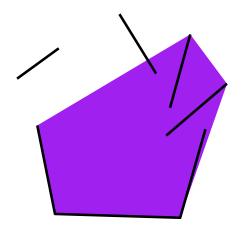
If two coverages overlap, their combined convex hull is covered

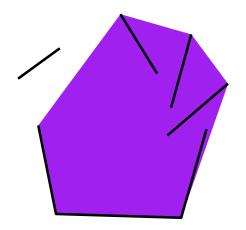
- ▶ Compute the convex hull, $CH(T_i)$, of every tree $T_i \in T$
- If any two convex hulls overlap, replace them with their convex hull
- ▶ Repeat until all convex hulls computed thusly are disjoint
- ▶ Resulting set of convex polygons is the *hull-cover* of *T*











Approximation

Does this approximate the coverage?

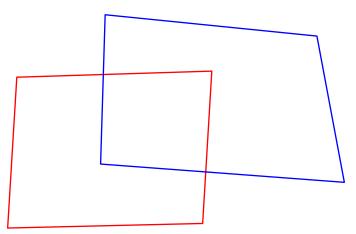
- ► A terrible approximation (for already hard inputs)
- ► A great approximation (for natural inputs)

Computing the hull-cover

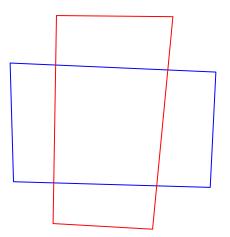
Challenges:

- ► Finding pairwise intersection is fairly expensive
- Computing convex hulls is fairly expensive

Let a *weakly disjoint pair* of convex polygons P, Q be a pair of convex polygons such that $P \setminus Q$ and $Q \setminus P$ are both connected sets of points, and P does not share a vertex with Q.



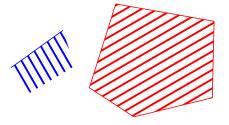
A pair of polygons that are weakly disjoint, but not disjoint

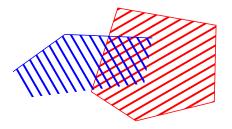


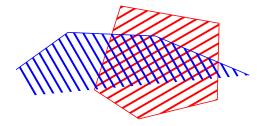
A pair of polygons that are not weakly weakly disjoint

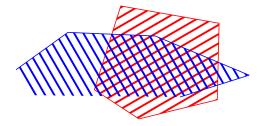
Lemma

If two convex polygons P, Q are weakly disjoint, then their boundaries intersect at at most two points.



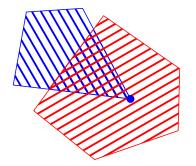






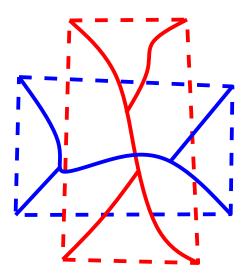
Lemma

If two convex polygons P, Q are weakly disjoint, but not disjoint, then one contains a vertex of the other.



Lemma

The convex hulls of two disjoint trees are weakly disjoint.

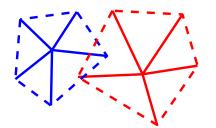


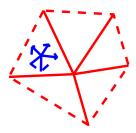
Blocked or Nested

Lemma

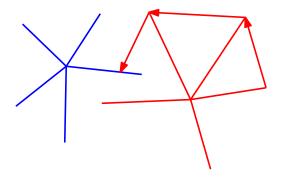
Assume R and S are two non-crossing trees whose convex hulls intersect. Then the convex hull of one is strictly inside the other, or there exists a pair of adjacent vertices on the convex hull of one whose visibility is blocked by the other tree.

Blocked or Nested



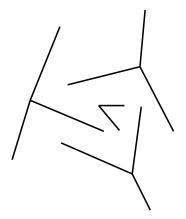


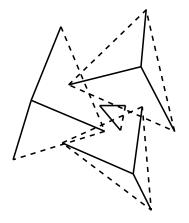
Shoot and Insert

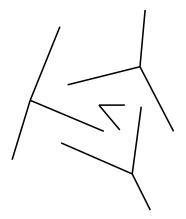


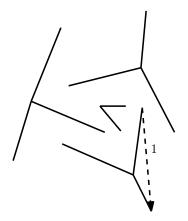
Shoot and Insert

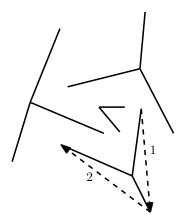
Ishaque et al. 2012: n pairwise disjoint polygonal obstacles can be preprocessed in $O(n \log n)$ time and space to support m permanent ray shootings in $O((n+m) \log^2 n + m \log m)$ time

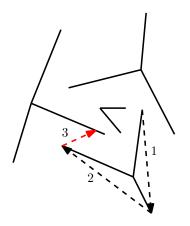


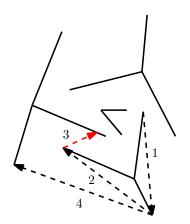


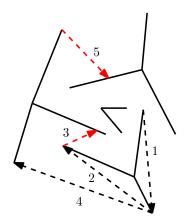


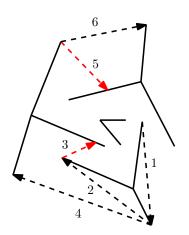


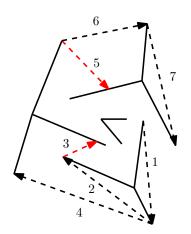


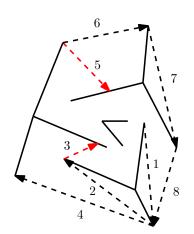


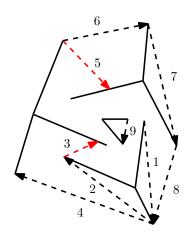


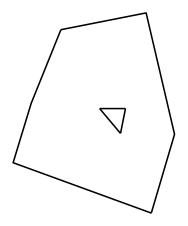


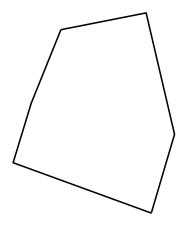












Analysis

 $O(n \log^2 n)$ time $O(n \log n)$ space

The End

Thank you! Questions?