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Opaque Forests

Given some closed and bounded convex polygon R, an opaque
forest, or barrier, of R is any set B of closed and bounded line
segments such that any line ¢ that intersects R also intersects B.



Example Opaque Forests

/



The Minimal Opaque Forest Problem

The Minimal Opaque Forest Problem is to construct an opaque
forest B for R such that the sum of the lengths of the line
segments that make up B are minimal.



Conjectured Minimal Forests

/N

The best we know, but the best there is?




Opaque Forests: Crusher of Dreams

Too hard!



The Inverse Problem

Given some barrier B, what is the maximal set of regions R(B) for
which B is an opaque forest? More precisely, given a set B of n
line segments, compute R(B) = {p € R? : every line through p
intersects B}. We say that R(B) is the coverage of B.



Coverage Examples




Coverage Examples




Definitions

Let a region be any bounded, closed, and connected set of points
in R2.



Definitions

Let a maximal region of a set P of points be a region R such that
for every point p in R, there exists an open ball A centered at p
such that ANR=ANP.

Intuition: A maximal region is a region that isn't a proper subset
of another.



Lemma 1

Lemma
If a maximal region of R(B) is a line segment, then that line
segment is part of B.



Proof

Assume for contradiction that there is some line segment
S € R(B) that is a maximal region, but is not in B.




Proof

Then there exists an open ball A of points around p such that that
ANR(B)=ANS




Proof

Equivalently, every point g in A that is not in S has a line ¢
through it which does not intersect B

\q\g



Proof

We can select a point ¢’ such that it is arbitrarily close to p, and
the line ¢ must therefore become ever more parallel




Proof

The line collinear with S intersects B, but any line that is parallel
to S and arbitrarily close to it does not




Proof

Therefore, there must exist some line segment S’ € B that is
parallel to S




Proof

There also must be some opaque forests around S, as S’ is not
sufficient to create it




Proof

There are still spaces for parallel lines to pass to the left and right
of S




Proof

A line ¢” that enters through one space and exits through the
other does not intersect B but passes through S

g//



Proof

Therefore, if a maximal region of R(B) is a line segment, then that
line segment is part of B.



Lemma 2

Lemma
R(B) may contain maximal regions that are single points, but are
not part of B.



Proof

Every line the passes through p intersects B.




Proof

Any point in an open ball around p has a line the does not
intersect B




Proof

Therefore, R(B) may contain maximal regions that are single
points, but are not part of B.



Clear and Blocked Points

Let a blocked point be a point p with respect to some barrier B
such that for every line £ which passes through p, ¢ intersects B.
Then a clear point is a point which is not blocked. Every point of
B is a blocked point. Moreover, R(B) is the set of all blocked
points with respect to B, and the complement R(B) of R(B) is
the set of all clear points.




Theorem 1

Theorem
For every barrier B, each maximal region C C R(B) is the

intersection of halfplanes defined by lines that pass through two
vertices of B.



Proof

Assume that there is some tangent ¢ of C which does not intersect

N4



Proof

Then ¢ can always be created by translating ¢ to intersect C but
not B




Proof

Assume that there is some tangent ¢ of C which is tangent to B at
only one point



Proof

Then ¢’ can always be created by offsetting and rotating ¢ around
that point to intersect C but not B




Proof

Therfore, for every barrier B, each maximal region C C R(B) is
the intersection of halfplanes defined by lines that pass through
two vertices of B.



Remark

Remark that this also implies that we need only finitely many
halfplanes to define a maximal region of R(B), and that every
maximal region of R(B) is convex.



Definitions

B is a set of n line segments consisting of m connected
components By, ..., By,. Further, Conv(B;) is the convex hull of
the connected component B;.



Definitions

Then for some point p € R?, we define L,(B;) as follows:

1. If B; is a single line segment, and p is collinear to B;, then
Lp(Bi) =0

2. Otherwise, if p lies on a vertex of Conv(B;), then L,(B;) is
the double-wedge defined by the lines of the two edges of
Conv(B;) that meet at p.

3. Otherwise, if p lies inside Conv(B;), or on its boundary,
OConv(B;), then Ly(B;) = R?

4. Otherwise, Ly(B;) is the double-wedge defined by the
tangents of Conv(B;) that pass through p.






Lemma 3

Lemma
Every point in Ly(B;j) U B; is a clear point with respect to B;.



Proof: Case 1

In case 1 R(B;) = B;. Therefore, even though L,(B;) = R?, the
only points that aren't clear are those of B; itself, which are
exactly those missing from L,(B;) U B;.



Proof: Case 2

In case 2 Conv(B;) is completely contained within L,(B;). Since
R(B;j) = Conv(B;), Lp(Bj) U B; can't contain a blocked point.




Proof: Case 3

In case 3 this follows trivially, as L,(B;) U B; is empty.




Proof: Case 4

In case 4 Conv(B;) is also completely contained within L,(B;). So
once more L,(B;) U Bj can't contain a blocked point.




Proof

Therefore, every point in L,(B;j) U B; is a clear point with respect
to B;.



Ly(B)

We now define L,(B) = U Ly(B;).

m



Remark

Remark that L,(B) = U L,(Bi), and B = U B;. Since

i=1 i=1
L,(Bj) U B; is a set of clear points with respect to B;, we can then
further conclude that L,(B) U B is a set of clear points with
respect to B.



Time For Some Math

Further, for some points r and s, since L,(B)U B and Ls(B) UB
are only clear points, L,(B) U BU Lg(B) U B also has this property.
After some rearranging we can also conclude that

(L(B) N Ls(B)) U B has this property as well.




Therefore given

L(B)=) N Ly(B)
i=1

p: vertex of Conv(B;)

we know L(B) U B is a set that also has this property.



Theorem 2

Theorem

Let Cl be the closure of the interior of a set of points, then
CI(L(B))UB C R(B) C L(B)U B. Further,

R(B)\ (CI(L(B)) U B) is a finite set of disjoint points.



Proof

Since R(B) is the set of all clear points with respect to B, and
L(B) U B is a set of some clear points with respect to B,
R(B) 2 L(B)U B. Therefore, R(B) C L(B) U B.




Proof

From Lemmas 1 and 2, we know that the only zero area maximal
regions of R(B) that aren't in B are individual points. Remark
that C/(L(B)) differs from L(B) in that only the zero area maximal
regions of L(B) have been removed. Therefore, if

CI(R(B)) = CI(L(B)), all that R(B) and CI(L(B)) U B may differ
by are disjoint points.



Proof

Since R(B) C L(B)U B, and B has zero area,

) €
CI(R(B)) C CI(L(B)), so all that remains to be proven is
CI(L(B)) C CI(R(B)). Equivalently, C/(R(B)) C CI(L(B))



Proof

Assume some postive-area region P of points is in C/(R(B))




Proof

Consider a point p € P.

DA



Proof

There is some line ¢ through p that does not intersect B.




Proof

Then ¢ can be rotated around p without intersecting B until it is
tangent with some connected component B; at some point p’. We
will call this rotated line ¢

B;

g/



Proof

Now assume for contradiction that p ¢ CI/(L(B)), then there exists
some Lp/(Bj), Jj # i, which pis in.



proof

» Therefore if p € CI(R(B)
» Therefore CI(R(B)) C )
» Therefore CI(L(B)) C CI(R(B))
» Therefore CI(R(B)) = )
» Therefore (CI(L(B))U B) C R(B)
» Therefore R(B) \ (CI(L(B))U

B) is a set of disjoint points



Proof

To prove that there are finitely many points, recall that by
Theorem 1 each maximal region of R(B) is an intersection of
halfplanes defined by the vertices of B. The only way to get a
point from this process is where three or more halfplane boundaries
intersect at a point. Since there are finitely many vertices and
therefore finitely many halfplanes, it follows that there are finitely
many points.



Proof

Therefore, CI(L(B)) U B C R(B) C L(B) U B. Further,
R(B)\ (CI(L(B)) U B) is a finite set of disjoint points.



Computing the Coverage

Theorem 2 provides a procedure for computing R(B).



Computing the Coverage

» Input: A list B of m connected components By, ..., Bn,
totalling n line segments

» Output: A collection of convex polygons, edges, and points
which make up the coverage



Computing CI(L(B))U B

» Compute the convex hulls of all m components

» For each vertex p, of each Conv(B;), compute L, (B;) for
each Conv(B;j)

» Union L, (B;)) into Ly, (B) by sorting them by angle
» Construct an arrangement using all the lines of the L, (B)
» Manually determine how many L, (B) one cell is part of

» Traverse the arrangement'’s dual cell adjacency graph while
keeping track of how many L, (B) each cell is in according to
whether a given edge exits or enters an L, (B)

» Output those cells which were in every L, (B)
» Output B itself



Computing the Disjoint Points

>

Select a point of intersection p on some line £ in the
arrangement

Perform a radial plane sweep on p to construct a set

© = {61, ...,0} of points on the interval 0 to 7, where each
point 0; represents the angle of a tangent to some B; from p,
and each point is labelled with the number of connected
components the line through p at the angle 0; + € intersects

Output p if every 6; is labelled with a non-zero value
Now select the intersection point g on £ that is adjacent to p

Query p and g for what tangents make them up, and update
only those values of 8;

By only looking at these values we can now determine if we
want to output q

Repeat this process for all the points on ¢

Repeat this process for all choices of ¢



Run Time

Our algorithm runs in O(m?n?) time. Since m < n, in the worst
case this will be O(n*) time.



The Worst Case

Start with a regular n-gon



The Worst Case

Shrink every edge by ¢

TN

~



The Worst Case

Resulting in a coverage like this

N

A\



The Worst Case

Each maximal region of the coverage maps to a face of K,,’s plane
embedding, of which there are Q(n*)

\

L



Optimal

Since this produces an output of size Q(n*), and our algorithm
requires O(n*) time, our algorithm is worst-case optimal.



Determining if a Point is Blocked

Given a barrier B determine whether a point p is in R(B).
» O(nlogn) time and O(n) space using a plane sweep.

» If R(B) is already constructed, O(log k) time using a
structure that takes O(k?) extra space and O(k? log k) time
to construct, where k is the number of edges in R(B).



The End

Thank you!



