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Opaque Forests

Given some closed and bounded convex polygon R, an opaque
forest, or barrier, of R is any set B of closed and bounded line
segments such that any line ` that intersects R also intersects B.



Example Opaque Forests



The Minimal Opaque Forest Problem

The Minimal Opaque Forest Problem is to construct an opaque
forest B for R such that the sum of the lengths of the line
segments that make up B are minimal.



Conjectured Minimal Forests

The best we know, but the best there is?



Opaque Forests: Crusher of Dreams

Too hard!



The Inverse Problem

Given some barrier B, what is the maximal set of regions R(B) for
which B is an opaque forest? More precisely, given a set B of n
line segments, compute R(B) = {p ∈ R2 : every line through p
intersects B}. We say that R(B) is the coverage of B.



Coverage Examples



Coverage Examples



Definitions

Let a region be any bounded, closed, and connected set of points
in R2.



Definitions

Let a maximal region of a set P of points be a region R such that
for every point p in R, there exists an open ball A centered at p
such that A ∩ R = A ∩ P.
Intuition: A maximal region is a region that isn’t a proper subset
of another.



Lemma 1

Lemma
If a maximal region of R(B) is a line segment, then that line
segment is part of B.



Proof
Assume for contradiction that there is some line segment
S ∈ R(B) that is a maximal region, but is not in B.

S



Proof
Then there exists an open ball A of points around p such that that
A ∩ R(B) = A ∩ S

p A



Proof
Equivalently, every point q in A that is not in S has a line `
through it which does not intersect B

q
`



Proof
We can select a point q′ such that it is arbitrarily close to p, and
the line `′ must therefore become ever more parallel

q′
`′



Proof
The line collinear with S intersects B, but any line that is parallel
to S and arbitrarily close to it does not



Proof
Therefore, there must exist some line segment S ′ ∈ B that is
parallel to S

S′



Proof
There also must be some opaque forests around S , as S ′ is not
sufficient to create it



Proof
There are still spaces for parallel lines to pass to the left and right
of S



Proof
A line `′′ that enters through one space and exits through the
other does not intersect B but passes through S

`′′



Proof

Therefore, if a maximal region of R(B) is a line segment, then that
line segment is part of B.



Lemma 2

Lemma
R(B) may contain maximal regions that are single points, but are
not part of B.



Proof
Every line the passes through p intersects B.

p



Proof
Any point in an open ball around p has a line the does not
intersect B



Proof

Therefore, R(B) may contain maximal regions that are single
points, but are not part of B.



Clear and Blocked Points

Let a blocked point be a point p with respect to some barrier B
such that for every line ` which passes through p, ` intersects B.
Then a clear point is a point which is not blocked. Every point of
B is a blocked point. Moreover, R(B) is the set of all blocked
points with respect to B, and the complement R(B) of R(B) is
the set of all clear points.



Theorem 1

Theorem
For every barrier B, each maximal region C ⊆ R(B) is the
intersection of halfplanes defined by lines that pass through two
vertices of B.



Proof

Assume that there is some tangent ` of C which does not intersect
B

C

B

`



Proof

Then `′ can always be created by translating ` to intersect C but
not B

C

B

` `′



Proof

Assume that there is some tangent ` of C which is tangent to B at
only one point

C

B

`



Proof

Then `′ can always be created by offsetting and rotating ` around
that point to intersect C but not B

C

B

` `′



Proof

Therfore, for every barrier B, each maximal region C ⊆ R(B) is
the intersection of halfplanes defined by lines that pass through
two vertices of B.



Remark

Remark that this also implies that we need only finitely many
halfplanes to define a maximal region of R(B), and that every
maximal region of R(B) is convex.



Definitions

B is a set of n line segments consisting of m connected
components B1, . . . ,Bm. Further, Conv(Bi ) is the convex hull of
the connected component Bi .



Definitions

Then for some point p ∈ R2, we define Lp(Bi ) as follows:

1. If Bi is a single line segment, and p is collinear to Bi , then
Lp(Bi ) = ∅

2. Otherwise, if p lies on a vertex of Conv(Bi ), then Lp(Bi ) is
the double-wedge defined by the lines of the two edges of
Conv(Bi ) that meet at p.

3. Otherwise, if p lies inside Conv(Bi ), or on its boundary,
∂Conv(Bi ), then Lp(Bi ) = R2

4. Otherwise, Lp(Bi ) is the double-wedge defined by the
tangents of Conv(Bi ) that pass through p.



Lp(Bi )

Lp(Bi)

Bip

p

Bi

Lp(Bi)

p Bi

Lp(Bi)

p
Lp(Bi)

Bi
1. 2.

3. 4.



Lemma 3

Lemma
Every point in Lp(Bi ) ∪ Bi is a clear point with respect to Bi .



Proof: Case 1

In case 1 R(Bi ) = Bi . Therefore, even though Lp(Bi ) = R2, the
only points that aren’t clear are those of Bi itself, which are
exactly those missing from Lp(Bi ) ∪ Bi .

Lp(Bi)

Bip



Proof: Case 2

In case 2 Conv(Bi ) is completely contained within Lp(Bi ). Since

R(Bi ) = Conv(Bi ), Lp(Bi ) ∪ Bi can’t contain a blocked point.

p
Lp(Bi)

Bi



Proof: Case 3

In case 3 this follows trivially, as Lp(Bi ) ∪ Bi is empty.

p Bi

Lp(Bi)



Proof: Case 4

In case 4 Conv(Bi ) is also completely contained within Lp(Bi ). So

once more Lp(Bi ) ∪ Bi can’t contain a blocked point.

p

Bi

Lp(Bi)



Proof

Therefore, every point in Lp(Bi ) ∪ Bi is a clear point with respect
to Bi .



Lp(B)

We now define Lp(B) =
m⋃
i=1

Lp(Bi ).

pB

Lp(B)



Remark

Remark that Lp(B) =
m⋃
i=1

Lp(Bi ), and B =
m⋃
i=1

Bi . Since

Lp(Bi ) ∪ Bi is a set of clear points with respect to Bi , we can then

further conclude that Lp(B) ∪ B is a set of clear points with
respect to B.



Time For Some Math

Further, for some points r and s, since Lr (B) ∪ B and Ls(B) ∪ B
are only clear points, Lr (B) ∪ B ∪ Ls(B) ∪ B also has this property.
After some rearranging we can also conclude that
(Lr (B) ∩ Ls(B)) ∪ B has this property as well.



L(B)

Therefore given

L(B) =
m⋂
i=1

⋂
p: vertex of Conv(Bi )

Lp(B)

we know L(B) ∪ B is a set that also has this property.



Theorem 2

Theorem
Let CI be the closure of the interior of a set of points, then
CI (L(B)) ∪ B ⊆ R(B) ⊆ L(B) ∪ B. Further,
R(B) \ (CI (L(B)) ∪ B) is a finite set of disjoint points.



Proof

Since R(B) is the set of all clear points with respect to B, and
L(B) ∪ B is a set of some clear points with respect to B,
R(B) ⊇ L(B) ∪ B. Therefore, R(B) ⊆ L(B) ∪ B.



Proof

From Lemmas 1 and 2, we know that the only zero area maximal
regions of R(B) that aren’t in B are individual points. Remark
that CI (L(B)) differs from L(B) in that only the zero area maximal
regions of L(B) have been removed. Therefore, if
CI (R(B)) = CI (L(B)), all that R(B) and CI (L(B)) ∪ B may differ
by are disjoint points.



Proof

Since R(B) ⊆ L(B) ∪ B, and B has zero area,
CI (R(B)) ⊆ CI (L(B)), so all that remains to be proven is
CI (L(B)) ⊆ CI (R(B)). Equivalently, CI (R(B)) ⊆ CI (L(B))



Proof

Assume some postive-area region P of points is in CI (R(B))

P



Proof

Consider a point p ∈ P.

p



Proof

There is some line ` through p that does not intersect B.

p

`



Proof
Then ` can be rotated around p without intersecting B until it is
tangent with some connected component Bi at some point p′. We
will call this rotated line `′.

`′

Bi
p′



Proof

Now assume for contradiction that p /∈ CI (L(B)), then there exists
some Lp′(Bj), j 6= i , which p is in.

Bj

Lp′(Bj)



proof

I Therefore if p ∈ CI (R(B)), p ∈ CI (L(B))

I Therefore CI (R(B)) ⊆ CI (L(B))

I Therefore CI (L(B)) ⊆ CI (R(B))

I Therefore CI (R(B)) = CI (L(B))

I Therefore (CI (L(B)) ∪ B) ⊆ R(B)

I Therefore R(B) \ (CI (L(B)) ∪ B) is a set of disjoint points



Proof

To prove that there are finitely many points, recall that by
Theorem 1 each maximal region of R(B) is an intersection of
halfplanes defined by the vertices of B. The only way to get a
point from this process is where three or more halfplane boundaries
intersect at a point. Since there are finitely many vertices and
therefore finitely many halfplanes, it follows that there are finitely
many points.



Proof

Therefore, CI (L(B)) ∪ B ⊆ R(B) ⊆ L(B) ∪ B. Further,
R(B) \ (CI (L(B)) ∪ B) is a finite set of disjoint points.



Computing the Coverage

Theorem 2 provides a procedure for computing R(B).



Computing the Coverage

I Input: A list B of m connected components B1, . . . ,Bm,
totalling n line segments

I Output: A collection of convex polygons, edges, and points
which make up the coverage



Computing CI (L(B)) ∪ B

I Compute the convex hulls of all m components

I For each vertex pk of each Conv(Bi ), compute Lpk (Bj) for
each Conv(Bj)

I Union Lpk (Bj) into Lpk (B) by sorting them by angle

I Construct an arrangement using all the lines of the Lpk (B)

I Manually determine how many Lpk (B) one cell is part of

I Traverse the arrangement’s dual cell adjacency graph while
keeping track of how many Lpk (B) each cell is in according to
whether a given edge exits or enters an Lpk (B)

I Output those cells which were in every Lpk (B)

I Output B itself



Computing the Disjoint Points

I Select a point of intersection p on some line ` in the
arrangement

I Perform a radial plane sweep on p to construct a set
Θ = {θ1, . . . , θk} of points on the interval 0 to π, where each
point θi represents the angle of a tangent to some Bj from p,
and each point is labelled with the number of connected
components the line through p at the angle θi + ε intersects

I Output p if every θi is labelled with a non-zero value

I Now select the intersection point q on ` that is adjacent to p

I Query p and q for what tangents make them up, and update
only those values of θi

I By only looking at these values we can now determine if we
want to output q

I Repeat this process for all the points on `

I Repeat this process for all choices of `



Run Time

Our algorithm runs in O(m2n2) time. Since m ≤ n, in the worst
case this will be O(n4) time.



The Worst Case

Start with a regular n-gon



The Worst Case

Shrink every edge by ε



The Worst Case

Resulting in a coverage like this



The Worst Case

Each maximal region of the coverage maps to a face of Kn’s plane
embedding, of which there are Ω(n4)



Optimal

Since this produces an output of size Ω(n4), and our algorithm
requires O(n4) time, our algorithm is worst-case optimal.



Determining if a Point is Blocked

Given a barrier B determine whether a point p is in R(B).

I O(n log n) time and O(n) space using a plane sweep.

I If R(B) is already constructed, O(log k) time using a
structure that takes O(k2) extra space and O(k2 log k) time
to construct, where k is the number of edges in R(B).



The End

Thank you!


