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Abstract

Let f(n, k) be the minimum number of edges that
must be removed from some complete geometric graph
G on n points, so that there exists a tree on k vertices
that is no longer a planar subgraph of G. In this paper
we show that

�
1
2

�
n2

k�1 � n
2  f(n, k)  2n(n�2)

k�2 . For
the case when k = n, we show that 2  f(n, n)  3.
For the case when k = n and G is a geometric graph
on a set of points in convex position, we show that at
least three edges must be removed.

1 Introduction

One of the most notorious problems in extremal graph
theory is the Erdős-Sós Conjecture, which states that
every simple graph with average degree greater than
k� 2 contains every tree on k vertices as a subgraph.
This conjecture was recently proved true for all suf-
ficiently large k (unpublished work of Ajtai, Komlós,
Simonovits, and Szemerédi).
In this paper we investigate a variation of this con-

jecture in the setting of geometric graphs. Recall that
a geometric graph G consists of a set S of points in
the plane (these are the vertices of G), plus a set of
straight line segments, each of which joins two points
in S (these are the edges of G). In particular, any set
S of points in the plane in general position naturally
induces a complete geometric graph. For brevity, we
often refer to the edges of this graph simply as edges
of S. If S is in convex position then G is a convex

geometric graph. A geometric graph is planar if no
two of its edges cross each other. An embedding of
an abstract graph H into a geometric graph G is an
isomorphism from H to a planar geometric subgraph
of G. For r � 0, an r-edge is an edge of G such that
in one of the two open semi-planes defined by the line
containing it, there are exactly r points of G.
In this paper all point sets are in general position

and G is a complete geometric graph on n points. It
is well known that G contains every tree on k vertices
as a planar subgraph [2], for every integer 1  k  n.
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Moreover, it is possible to embed any such tree into
G, when the image of a given vertex is predefined [4].

Let F be a subset of edges of G, which we call for-
bidden edges. If T is a tree for which every embedding
into G uses an edge of F , then we say that F forbids

T . In this paper we study the question of what is the
minimum size of F so that there is a tree on k vertices
that is forbidden by F . Let f(n, k) be the minimum of
this number taken over all complete geometric graphs
on n points. As f(2, 2) = 1, f(3, 3) = 2, f(4, 4) = 2
and f(n, 2) =

�n
2

�
, we assume through out the paper

that n � 5 and k � 3.
We show the following bounds on f(n, k).

Theorem 1

✓
1

2

◆
n2

k � 1
� n

2
 f(n, k)  2

n(n� 2)

k � 2

Theorem 2

2  f(n, n)  3

In the case when G is a convex complete geometric
graph, we show that the minimum number of edges
needed to forbid a tree on n vertices is three. Some
results shown in [3] are closely related to this problem.

An equivalent formulation of the problem studied in
this paper is to ask how many edges must be removed
from G so that it no longer contains some planar sub-
tree on k vertices. A di↵erent but related problem is
to ask how many edges must be removed from G, so
that it no longer contains any planar subtree on k
vertices. For the case of k = n, in [5], it is proved
that if any n � 2 edges are removed from G, it still
contains a planar spanning subtree. Note that if the
n� 1 edges incident to any vertex of G are removed,
then G no longer contains a spanning subtree. In gen-
eral, for 2  k  n� 1, in [1], it is proved that if any

set of
l
n(n�k+1)

2

m
� 1 edges are removed from G, it

still contains a planar subtree on k vertices. In the
same paper it is also shown that this bound is tight

2 Spanning Trees

In this section we consider the case when k = n. Let
T be a tree on n vertices. Consider the following
algorithm to embed T into G. Choose a vertex v of T ;
root T at v. For every vertex of T choose an arbitrary
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Figure 1: An embedding of a tree using the algorithm.

Figure 2: T7 and T8.

order of its children. Suppose that the neighbors of
v are u1, . . . , um, and let n1, . . . , nm be the number
of nodes in their corresponding subtrees. Choose a
convex hull point p of G and embed v into p. Sort
the remaining points of G counter-clockwise by angle
around p. Choose m + 1 rays centered at p so that
the wedge between two consecutive rays is convex and
between the i-th ray and the (i + 1)-th ray there are
exactly ni points ofG. Let Si be this set of points. For
each ui choose a convex hull vertex of Si visible from
p and embed ui into this point. Recursively embed
the subtrees rooted at each ui into Si. Note that this
algorithm provides an embedding of T into G. We will
use this embedding frequently throughout the paper.
See Figure 1.

For every integer n � 2 we define a tree Tn as fol-
lows: If n = 2, then Tn consists of only one edge; if
n is odd, then Tn is constructed by subdividing once
every edge of a star on n�1

2 vertices; if n is even and
greater than 2, then Tn is constructed by subdividing
an edge of Tn�1. These trees are particular cases of
spider trees. See Figure 2.

We prove the lower bound of f(n, n) � 2 of Theo-
rem 2.

Theorem 3 If G has only one forbidden edge, then

any tree on n vertices can be embedded into G, with-

out using the forbidden edge.

Proof. Let e be the forbidden edge of G. Let T be
a tree on n vertices. Choose a root for T . Sort the

children of each node of T , by increasing size of their
corresponding subtree. Embed T into G with the em-
bedding algorithm, choosing at all times the rightmost
point as the root of the next subtree. Suppose that e
is used in this embedding. Let e := (p, q) so that u is
embedded into p and v is embedded into q (note that
u and v are vertices of T ).

Suppose that the subtree rooted at v has at least
two nodes. In the algorithm, we embedded this sub-
tree rooted at v into a set of at least two points. We
chose a convex hull point (q), of this set visible from p
to embed v. In this case we may choose another con-
vex hull point visible from p to embed v and continue
with the algorithm. Note that (p, q) is no longer used
in the final embedding.

Suppose that v is a leaf, and that v has a sibling v0

whose subtree has at least two nodes. Then we may
change the order of the children of u so that e is no
longer used in the embedding, or if it is, then v0 is
embedded into q, but then we proceed as above.

Suppose that v is a leaf, and that all its siblings are
leaves. The subtree rooted at u is a star. We choose
a point distinct from p and q in the point set where
this subtree is embedded, and embed u into this point.
Afterwards we join it to the remaining points. This
produces an embedding that avoids e.

Assume then, that v is a leaf and that it has no
siblings. We distinguish the following cases:

1. u has no siblings. In this case, the subtree
rooted at the parent of u is a path of length two.
It is always possible to embed this subtree with-
out using e. See Figure 3.

2. u has a sibling u0

whose subtree is not an

edge. We may change the order of the sib-
lings of u, with respect to their parent, so that
the subtree rooted at u0 will be embedded into
the point set containing p and q. In the initial
order—increasing by size of their corresponding
subtrees—u0 is after u. We may assume that
in the new ordering, the order of the siblings of
u before it, stays the same. Therefore p is the
rightmost point of the set into which the subtree
rooted at u0 will be embedded. Embed u0 into p.
Either we find an embedding not using e, or this
embedding falls into one of the cases considered
before.

3. u has at least one sibling, all whose corre-

sponding subtrees are edges

Suppose that u has no grandparent; then T is
equal to Tn and n is odd. Let w be the par-
ent of u. Embed w into p. Let p1, . . . , pn�1 be
the points of G di↵erent from p sorted counter-
clockwise by angle around p; choose p1 so that
the angle between two consecutive points is less
than ⇡. Let u1, . . . , u(n�1)/2 be the neighbors of
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Figure 3: The embedding of a path of length three.
The grandparent of u is highlighted and the forbidden
edge is dashed.

Figure 4: The two sub-cases, when u has a grandpar-
ent w, and all the subtrees of its children are edges.
Odd points are painted in black and even points in
white. The forbidden edges are dashed.

w. Embed each ui into p2i�1 and its child into
p2i. If q equals p2j�1 for some j then embed uj

into p2j and its child into p2j�1. This embedding
avoids e.

Suppose that w is the grandparent of u and let
p0 be the point into which w is embedded. Let
S be the point set into which the subtree rooted
at the parent of u is embedded. Note that S
has an odd number of points. We replace the
embedding as follows. Sort S counter-clockwise
by angle around p0. Call a point even if it has an
even number of points before it in this ordering.
Call a point odd if it has an odd number of points
before it in this ordering. If e is incident to an
odd point, then we embed the parent of u into
this point. The remaining subtree rooted at u can
be embedded without using e. If the endpoints
of e are both even, between them there is an odd
point. We embed the parent of u into this point.
The remaining vertices can be embedded without
using e (see Figure 4).

⇤

The upper bound of f(n, n)  3 of Theorem 2
follows directly from Lemma 6. Now we prove in
Lemma 4 and Theorem 5, that if G is a convex geo-
metric graph, at least three edges are needed to forbid

some tree on n vertices. Lemma 4 can be proved eas-
ily using a previous result (Theorem 2.1 of [3]). We
provide a self-contained proof for completeness.

Lemma 4 Let T be a tree on n vertices. If G is a

convex geometric graph, then T can be embedded into

G using less than

n
2 convex hull edges of G.

Proof. If T is a star, then any embedding of T into
G uses only two convex hull edges. If T is a path
then it can be embedded into G using at most two
convex hull edges. Therefore, we may assume that T
is neither a star nor a path.

Since T is not a path, it has a vertex of degree at
least three. Choose this vertex as the root. Since T
is not a star, the root has a child whose subtree has
at least two nodes. Sort the children of T so that this
node is first. Embed T into G with the embedding
algorithm.

Let u and v be vertices of T , so that u is the parent
of v. Suppose that the subtree rooted at v has at
least two nodes. Then in the embedding algorithm we
have at least two choices to embed v once the ordering
of the children of u has been chosen. At least one
of which is such that (u, v) is not embedded into a
convex hull edge. Therefore, we may assume that the
embedding is such that all the convex hull edges used
are incident to a leaf.

Since the first child of the root is not a leaf, there
is at most one convex hull edge incident to the root in
the embedding. Note that any vertex of T , other than
the root, is incident to at most one convex hull edge
in the embedding. If n/2 or more convex hull edges
are used, then there are at least n/2 non-leaf vertices,
each adjacent to a leaf. These vertices must be all
the vertices in T and there are only n/2 such pairs (n
must also be even). Therefore every non-leaf vertex
has at most one child which is a leaf. In particular
the root has at most one child which is a leaf. Since
the root was chosen of degree at least three it has a
child which is not a leaf nor the first child; we place
this vertex last in the ordering of the children of the
root. The leaf adjacent to the root can no longer be
a convex hull edge and the embedding uses less than
n/2 convex hull edges. ⇤

Theorem 5 If G is a convex geometric graph and

has at most two forbidden edges, then any tree on

n vertices can be embedded into G, without using a

forbidden edge.

Proof. Let f0 be an embedding given by Lemma 4,
of T into G. For 0  i  n, let fi be the embedding
produced by rotating f0, i places to the right. Assume
that in each of these rotations at least one forbidden
edge is used, as otherwise we are done. Let e1, . . . , em
be the edges of T that are mapped to a forbidden
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edge in some rotation. Assume that the two forbidden
edges are an l-edge and an r-edge respectively.

Suppose that l 6= r. Then, each edge of T can be
embedded into a forbidden edge at most once in all of
the n rotations. Thus m � n. This is a contradiction,
since T has n� 1 edges.

Suppose that l = r. Then, each of the ei is mapped
twice to a forbidden edge. Thus m � n/2. By Lemma
4, f0 uses less than n/2 convex hull edges. Therefore,
l and r must be greater than 0. But a set of n/2
or more r-edges, with r > 0, must contain a pair of
edges that cross. And we are done, since f0 is an
embedding. ⇤

3 Bounds on f(n, k)

In this section we prove Theorem 1. First we show the
upper bound which can also be seen as a consequence
of Theorem 2.2 of [3]. However, we provide a self-
contained proof for completeness.

Lemma 6 If G is a convex geometric graph, then

forbidding three consecutive convex hull edges of G
forbids the embedding of Tn.

Proof. Recall that Tn comes from subdividing a
star, let v be the non leaf vertex of this star. Let
(p1, p2), (p2, p3), (p3, p4) be the forbidden edges, in
clockwise order around the convex hull of G. Note
that in any embedding of Tn into G, an edge incident
to a leaf of Tn, must be embedded into a convex hull
edge. Thus, the leaves of Tn nor its neighbors can
be embedded into p2 or p3, without using a forbid-
den edge. Thus, v must be embedded into p2 or p3.
Without loss of generality assume that v is embedded
into p2. But then, the embedding must use (p2, p3) or
(p3, p4) ⇤

Lemma 7 If G is a convex geometric graph, then

forbidding any three pairs of consecutive convex hull

edges of G forbids the embedding of Tn.

Proof. Let p1, p2 and p3 be the vertices in the middle
of the three pairs of consecutive forbidden edges of
G. Note that a leaf of Tn, nor its neighbor can be
embedded into p1, p2 or p3, without using a forbidden
edge. But at most two points do not fall into this
category. ⇤

Lemma 8 f(n, k)  2n(n�2)
k�2

Proof. Let G be a complete convex geometric
graph. We forbid every r-edge of G for r =

0, . . . ,
l
2n�2
k�2 � 2

m
. Note that, in total we are forbid-

ding at most n
⇣l

2n�2
k�2 � 2

m
+ 1

⌘
 2n(n�2)

k�2 edges.

As every subset of points of G is in convex position,
it su�ces to show that every induced subgraph H of

G on k vertices is in one of the two configurations of
Lemma 6 and 7.

Assume then, that H does not contain three con-
secutive forbidden edges in its convex hull nor three
pairs of consecutive forbidden edges in its convex hull.
H has at most two (non-adjacent) pairs of consecu-
tive forbidden edges in its convex hull. Therefore ev-
ery forbidden edge of H in its convex hull—with the
exception of at most two—must be preceded by an `-

edge (of G), with ` >
l
2n�2
k�2 � 2

m
. H contains at least

k�2
2 of these edges. The points separated by these

edges amount to more than k�2
2

l
2n�2
k�2 � 2

m
� n � k

points of G. Together with the k points of H this is
strictly more than n—a contradiction.

⇤
Now, we show the lower bound of Theorem 1.

Lemma 9 f(n, k) �
�
1
2

�
n2

k�1 � n
2

Proof. Let F be a set of edges whose removal from
G forbids some k-tree. Let H := G \ F . Note that
H contains no complete Kk as a subgraph, other-
wise any k-tree can be embedded in this subgraph
[2]. By Turán’s Theorem [6], H cannot contain more

than
⇣

k�2
k�1

⌘
n2

2 edges. Thus F must have size at least
�
1
2

�
n2

k�1 � n
2 . ⇤
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