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Abstract. In this paper we show that the θ-graph with 4 cones has
constant stretch factor, i.e., there is a path between any pair of vertices
in this graph whose length is at most a constant times the Euclidean
distance between that pair of vertices. This is the last θ-graph for which
it was not known whether its stretch factor was bounded.
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1 Introduction

A c-spanner of a weighted graph G is a connected sub-graphH with the property
that for all pairs of vertices u and v, the weight of the shortest path between u
and v in H is at most c times the weight of the shortest path between u and v
in G, for some fixed constant c ≥ 1. The smallest constant c for which H is a
c-spanner of G is referred to as the stretch factor or spanning ratio of the graph.

The graph G is referred to as the underlying graph. In our setting, the un-
derlying graph is the complete graph on a set of n points in the plane and the
weight of an edge is the Euclidean distance between its endpoints. A c-spanner
of such a graph is called a geometric c-spanner. For a comprehensive overview
of geometric c-spanners, see the book by Narasimhan and Smid [10].

In this paper, we focus on θ-graphs. Introduced independently by Clarkson [7]
and Keil [9], the θm-graph is constructed as follows. Given a set P of points in
the plane, we consider each point p ∈ P and partition the plane into m cones
(regions in the plane between two rays originating from the same point) with
apex p, each defined by two rays at consecutive multiples of θ = 2π/m radians
from the negative y-axis. We label the cones C0(p) through Cm−1(p), in counter-
clockwise order around p, starting from the negative y-axis; see Fig. 1. In each
cone Ci(p), we add an edge between p and pi, the point in Ci(p) nearest to p.
However, instead of using the Euclidean distance, we measure distance in Ci(p)
by projecting each point onto the angle bisector of this cone. Formally, pi is the
point in Ci(p) such that for every other point w ∈ Ci(p), the projection of pi
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onto the angle bisector of Ci(p) lies closer to p than the projection of w. For
simplicity, we assume that no two points of P lie on a line parallel to either the
boundary or the angle bisector of a cone.

C1(p)

C0(p)

C2(p)

C3(p)

p1

p0p3

p2

p

Fig. 1. The neighbors of p in the
θ4-graph of P . Each edge supports
an empty isosceles triangle.

It has been shown that θm-graphs are
geometric spanners for m ≥ 7, and their
stretch factor approaches 1 as m goes to in-
finity [4,6,11]. The proofs crucially rely on the
fact that, given two points p and q such that
q ∈ Ci(p), the distance between pi and q is al-
ways less than the distance between p and q.
This property does not hold for m ≤ 6 and in-
deed, the path obtained by starting at p and
repeatedly following the edge in the cone that
contains q, is not necessarily a spanning path.
The main motivation for using spanners is usu-
ally to reduce the number of edges in the graph
without increasing the length of shortest paths
too much. Thus, θ-graphs with fewer cones are more interesting in practice, as
they have fewer edges. This raises the following question: “What is the smallestm
for which the θm-graph is a geometric spanner?” Bonichon et al. [1] showed that
the θ6-graph is a geometric 2-spanner. Recently, Bose et al. [5] proved that the
θ5-graph is a geometric 9.96-spanner. Coming from the other side, El Molla [8]
showed that there is no constant c for which the θ2- and θ3-graphs are geomet-
ric c-spanners. This leaves the θ4-graph as the only open question. Moreover,
its resemblance to graphs like the Yao4-graph [3] and the L∞-Delaunay trian-
gulation [2], both of which are geometric c-spanners, makes this question more
tantalizing. In this paper we establish an upper bound of approximately 237 on
the stretch factor of the θ4-graph. In Section 5, we present a lower bound of 7
that we believe is closer to the true stretch factor of the θ4-graph.

2 Existence of a Spanning Path

Let P be a set of points in the plane. In this section, we prove that the θ4-graph
of P is a spanner. We do this by showing that the θ4-graph approximates the
L∞-Delaunay triangulation. The L∞-Delaunay triangulation of P is a geometric
graph with vertex set P , and an edge between two points of P whenever there
exists an empty axis-aligned square having these two points on its boundary.

Bonichon et al. [2] showed that the L∞-Delaunay triangulation has a stretch

factor of c∗ =
√
4 + 2

√
2, i.e., there is a path between any two vertices whose

length is at most c∗ times their Euclidean distance. We approximate this path
in the L∞-Delaunay triangulation by showing the existence of a spanning path
in the θ4-graph of P joining the endpoints of every edge in the L∞-Delaunay
triangulation. The main ingredient to obtain this approximation is Lemma 1
whose proof is presented in Section 4. Before stating this result, we need a few
more definitions. Given two points s and t, their L1 distance dL1(s, t) is the sum
of the absolute differences of their x- and y-coordinates.
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Let St(s) be the smallest axis-aligned square centered on t that contains s.
Let �−t and �+t be the lines with slope −1 and +1 passing through t, respectively.

Throughout this paper, we repeatedly use t to denote a target point of P
that we want to reach via a path in the θ4-graph. Therefore, we typically omit
the reference to t and write �−, �+ and S(s) when referring to �−t , �

+
t and St(s),

respectively.
We say that an object is empty if its interior contains no point of P . An

s-t-path is a path with endpoints s and t.

Lemma 1. Let s and t be two points of P such that t lies in C0(s). If the top-
right quadrant of S(s) is empty and C1(s) contains no point of P below �−, then
there is an s-t-path in the θ4-graph of P of length at most 18 · dL1(s, t).

For ease of readability, the proof of Lemma 1 is deferred to Section 4.
Given a path ϕ, let |ϕ| denote the sum of the lengths of the edges in ϕ. Using

Lemma 1, we obtain the following.

Lemma 2. Let s and t be two points of P . If the smallest axis-aligned square
enclosing s and t, that has t as a corner, is empty, then there is an s-t-path in
the θ4-graph of P of length at most (

√
2 + 36) · |st|.

Proof. Assume without loss of generality that s lies in C1(t). Then, the top-
right quadrant of S(s) is empty as it coincides with the smallest axis-aligned
square enclosing s and t that has t as a corner; see Fig. 2(a). Recall that s3 is
the neighbor of s in the θ4-graph inside the cone C3(s). Assume that s3 �= t as
otherwise the result follows trivially. Consequently, s3 must lie either in C0(t) or
in C2(t). Assume without loss of generality that s3 lies in the top-left quadrant
of S(s). As s3 lies in the interior of S(s), S(s3) ⊂ S(s) and hence, the top-
right quadrant of S(s3) is empty. Moreover, s3 lies above �− and hence C1(s3)
contains no point of P below �−. Therefore, by Lemma 1 there is an s3-t-path ϕ
of length at most 18 · dL1(s3, t). Since s3 lies inside S(s), |s3t| ≤

√
2 · |st| and

hence |ϕ| ≤ 18 · dL1(s3, t) ≤ 18
√
2 · |s3t| ≤ 18

√
2
√
2 · |st| = 36 · |st|. Moreover,

the length of edge ss3 is at most dL1(s, t) ≤
√
2 · |st| since s3 must lie above �−.

Thus, ss3 ∪ ϕ is an s-t-path of length |ss3|+ |ϕ| ≤ (
√
2 + 36) · |st|. 	


The following observation is depicted in Fig. 2(b).

Observation 1 Let S be an axis-aligned square. If two points a and b lie on
consecutive sides along the boundary of S, then there is a square Sab containing
the segment ab such that Sab ⊆ S and either a or b lies on a corner of Sab.

Lemma 3. Let ab be an edge of the L∞-Delaunay triangulation of P . There is
an a-b-path ϕab in the θ4-graph of P such that |ϕab| ≤ (1+

√
2) · (√2+ 36) · |ab|.

Proof. Let T = (a, b, c) be a triangle in the L∞-Delaunay triangulation of P . By
definition of this triangulation, there is an empty square S such that every vertex
of T lies on the boundary of S. By the general position assumption, a, b and c
must lie on different sides of S. If a and b lie on consecutive sides of the boundary
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Fig. 2. a) Configuration used in the proof of Lemma 2, grey areas represent empty
regions. b) If a and b lie on consecutive sides of a square S, there is a square Sab such
that ab ⊂ Sab ⊆ S and either a or b lies on a corner of Sab

of S, then by Observation 1 and Lemma 2 there is a path ϕab contained in the
θ4-graph of P such that |ϕab| ≤ (

√
2 + 36) · |ab|.

If a and b lie on opposite sides of S, then both ac and cb have their endpoints
on consecutive sides along the boundary of S. Let Sac be the square contained in
S existing as a consequence of Observation 1 when applied on the edge ac. Thus,
either a or c lies on a corner of Sac. Furthermore, as Sac is contained in S, it is
also empty. Consequently, by Lemma 2, there is a a-c-path ϕac such that |ϕac| ≤
(
√
2+36) · |ac|. Analogously, there is a path ϕcb such that |ϕcb| ≤ (

√
2+36) · |cb|.

Using elementary geometry, it can be shown that since a and b lie on opposite
sides of S, |ac|+ |cb| ≤ (1 +

√
2) · |ab|. Therefore, the path ϕab = ϕac ∪ϕcb is an

a-b-path such that |ϕab| ≤ (1 +
√
2) · (√2 + 36) · |ab|. 	


Theorem 1. The θ4-graph of P is a spanner whose stretch factor is at most

(1 +
√
2) · (

√
2 + 36) ·

√
4 + 2

√
2 ≈ 237

Proof. Let ν be the shortest path joining s with t in the L∞-Delaunay triangula-

tion of P . Bonichon et al. [2] proved that the length of ν is at most
√
4 + 2

√
2·|st|.

By replacing every edge in ν with the path in the θ4-graph of P that exists by
Lemma 3, we obtain an s-t-path of length at most

(1 +
√
2) · (√2 + 36) · |ν| ≤ (1 +

√
2) · (√2 + 36) ·

√
4 + 2

√
2 · |st| 	


3 Light Paths

We introduce some tools that will help us prove Lemma 1 in Section 4.
For a point p in the θ4-graph, recall that there is an edge between p and pi,

the point in Ci(p) nearest to p. We call the edge ppi an i-edge. Notice that every
i-edge is associated with an empty isosceles right triangle. For a point p, the
empty triangle generated by its i-edge is denoted by Δi(p).

Let ϕ be a path that follows only 0- and 1-edges. A 0-edge pp0 of ϕ is light
if no edge of ϕ crosses the horizontal ray shooting to the right from p. We say
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that ϕ is a light path if all its 0-edges are light. In this section we show how to
bound the length of a light path with respect to the Euclidean distance between
its endpoints.

Lemma 4. Given a light path ϕ, every pair of 0-edges of ϕ has disjoint orthog-
onal projection on the line defined by the equation y = −x.

Proof. Let s and t be the endpoints of ϕ. Let pp0 be any 0-edge of ϕ and let νp0

be the diagonal line extending the hypotenuse of Δ0(p), i.e., νp0 is a line with
slope +1 passing through p0. Let γ be the path contained in ϕ that joins p0
with t. We claim that every point in γ lies below νp0 . If this claim is true, the
diagonal lines constructed from the empty triangles of every 0-edge in ϕ split
the plane into disjoint slabs, each containing a different 0-edge of ϕ. Thus, their
projection on the line defined by the equation y = −x must be disjoint.

To prove that every point in γ lies below νp0 , notice that every point in γ
must lie to the right of p since ϕ is x-monotone, and below p since pp0 is light,
i.e., γ is contained in C0(p). Since Δ0(p) is empty, no point of γ lies above νp0

and inside C0(p) yielding our claim. 	

Given a point w of P , we say that a point p of P is w-protected if C1(p) contains
no point of P below or on �−w , recall that �−w is the line with slope −1 passing
through w. In other words, a point p is w-protected if either C1(p) is empty or
p1 lies above �−w . Moreover, every point lying above �−w is w-protected and no
point in C3(w) is w-protected.

Given two points s and t such that s lies to the left of t, we aim to construct
a path joining s with t in the θ4-graph of P . The role of t-protected points will
be central in this construction. However, as a first step, we relax our goal and
prove instead the existence of a light path σs→t going from s towards t that does
not necessarily end at t.

To construct σs→t, start at a point z = s and repeat the following steps until
reaching either t or a t-protected point w lying to the right of t.

– If z is not t-protected, then follow its 1-edge, i.e., let z = z1.
– If z is t-protected, then follow its 0-edge, i.e., let z = z0.

The pseudocode of this algorithm can be found in Algorithm 1.

Algorithm 1. Given two points s and t of P such that s lies to the left of t,
algorithm to compute path σs→t

1: Let z = s.
2: Append s to σs→t.
3: while z �= t and z is not a t-protected point lying to the right of t do
4: if z is t-protected then z = z0 else z = z1
5: Append z to σs→t.
6: end while
7: return σs→t
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Lemma 5. Let s and t be two points of P such that s lies to the left of t.
Algorithm 1 produces a light x-monotone path σs→t joining s with a t-protected
point w such that either w = t or w lies to the right of t. Moreover, every edge
on σs→t is contained in S(s).

t

v

v0

�−

s

Δ0(v)

Fig. 3. If v is a t-protected
point, then edge vv0 is light in
any path σs→t that contains it

Proof. By construction, Algorithm 1 finishes only
when reaching either t or a t-protected point lying
to the right of t. Since every edge of σs→t is either
a 0-edge or a 1-edge traversed from left to right,
the path σs→t is x-monotone. The left endpoint
of every 0-edge in σs→t lies in C2(t) as it most be
t-protected and no t-protected point lies in C3(t).
Thus, if vv0 is a 0-edge, then v lies in C2(t) and
hence, v0 lies inside S(s) and above �+. Otherwise
t would lie inside Δ0(v). Therefore, every 0-edge
in σs→t is contained in S(s).

Every 1-edge in σs→t has its two endpoints ly-
ing below �−; otherwise, we followed the 1-edge
of a t-protected point which is not allowed by Step 4 of Algorithm 1. Thus, every
1-edge in σs→t lies below �− and to the right of s. As 1-edges are traversed from
bottom to top and the 0-edges of σs→t are enclosed by S(s), every 1-edge in
σs→t is contained in S(s).

Let vv0 be any 0-edge of σs→t. Since we followed the 0-edge of v, we know
that v is t-protected and hence no point of P lies in C1(v) and below �−. As
every 1-edge has its two endpoints lying below �− and σs→t is x-monotone, no
1-edge in σs→t can have an endpoint in C1(v). In addition, every 0-edge of σs→t

joins its left endpoint with a point below it. Thus, no 0-edge of σs→t can cross
the ray shooting to the right from v. Consequently, vv0 is light and hence σs→t

is a light path; see Fig 3. 	


Given two points p and q, let |pq|x and |pq|y be the absolute differences between
their x- and y-coordinates, respectively, i.e., dL1(p, q) = |pq|x + |pq|y.
Lemma 6. Let s and t be two points of P such that s lies to the left of t. If s
is t-protected, then |σs→t| ≤ 3 · dL1(s, t).

Proof. To bound the length of σs→t, we bound the length of its 0-edges and
the length of its 1-edges separately. Let Z be the set of all 0-edges in σs→t and
consider their orthogonal projection on �−. By Lemma 4, all these projections
are disjoint. Moreover, the length of every 0-edge in Z is at most

√
2 times the

length of its projection. Let s⊥ be the orthogonal projection of s on �− and let δ
be the segment joining s⊥ with t. Since s is t-protected and σs→t is x-monotone,
the orthogonal projection of every 0-edge of Z on �− is contained in δ and hence∑

e∈Z |e| ≤ √
2· |δ|. Since |δ| = dL1(s, t)/

√
2 as depicted in Fig. 4(a), we conclude

that
∑

e∈Z |e| ≤ dL1(s, t).
Let O be the set of all 1-edges in σs→t and let η be the horizontal line passing

through t. Since σs→t is x-monotone, the orthogonal projections of all edges in
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a)
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dL1
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dL1
(s,t)√
2

δ

�−

�+

�−

t η

v

qi

v0
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t

γ1
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p1
q1

c)

γi

Fig. 4. a) The segment δ having length dL1(s, t)/
√
2. b) The 0-edges of σs→t have

disjoint projections on �− and the 1-edges have disjoint projections on the horizontal
line passing through t. The slope between the endpoints of the maximal paths γ0 and
γ1 is less than 1. c) The slope between pi with qi is smaller than 1.

O on η are disjoint. Let γ0, . . . , γk be the connected components induced by O,
i.e., the set of maximal connected paths that can be formed by the 1-edges in
O; see Fig. 4(b). We claim that the slope of the line joining the two endpoints
pi, qi of every γi is smaller than 1. If this claim is true, the length of every γi is
bounded by |piqi|x + |piqi|y ≤ 2 · |piqi|x as each γi is x- and y-monotone.

To prove that the slope between pi and qi is smaller than 1, let vv0 be the
0-edge of σs→t such that v0 = pi. Since vv0 is in σs→t, v is t-protected by Step 4
of Algorithm 1 and hence, as Δ0(v) is empty, qi must lie below the line with
slope +1 passing through pi yielding our claim; see Fig. 4(c) for an illustration.

Let ω be the segment obtained by shooting a ray from t to the left until
hitting the boundary of S(s). We bound the length of all edges in O using the
length of ω. Notice that the orthogonal projection of every γi on η is contained
in ω, except maybe for γk whose right endpoint qk could lie below and to the
right of t. Two cases arise: If the projection of γk on η is contained in ω, then∑k

i=0 |γi| ≤
∑k

i=0 2 · |piqi|x ≤ 2 · |ω|. Otherwise, since qk is t-protected, qk lies
below �− and hence dL1(p

k, qk) ≤ dL1(p
k, t). Moreover, pk must lie above �+ as pk

is reached by a 0-edge coming from above η, i.e., |pkt|y < |pkt|x. Therefore,

|γk| ≤ dL1(p
k, qk) ≤ dL1(p

k, t) = |pkt|x + |pkt|y ≤ 2 · |pkt|x

Consequently,
∑k

i=0 |γi| ≤ 2·|pkt|x+
∑k−1

i=0 2·|piqi|x ≤ 2·|ω|. Since |ω| ≤ dL1(s, t),

we get that
∑

e∈O |e| = ∑k
i=0 |γi| ≤ 2 · dL1(s, t). Thus, σs→t is a light path of

length at most
∑

e∈O |e|+∑
e∈Z |e| ≤ 3 · dL1(s, t). 	


By the construction of the light path in Algorithm 1, we observe the following.

Lemma 7. Let s and t be two points of P such that s lies to the left of t. If
the right endpoint w of σs→t is not equal to t, then w lies either above �+ if
w ∈ C1(t), or below �− if w ∈ C0(t).
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Proof. If w lies in C1(t), then by Step 4 of Algorithm 1, w was reached by a
0-edge pw such that p is a t-protected point lying above and to the left of t. As
Δ0(p) is empty, t lies below the hypotenuse of Δ0(p) and hence w lies above �+.

Assume that w lies in C0(t). Notice that w is the only t-protected point of σs→t

that lies to the right of t; otherwise, Algorithm 1 finishes before reaching w. By
Step 4 of Algorithm 1, every 0-edge of σs→t needs to have a t-protected left
endpoint. Moreover, every t-protected point of σs→t, other that w, lies above
and to the left of t. Therefore, w is not reached by a 0-edge of σs→t, i.e., w must
be the right endpoint of a 1-edge pw of σs→t. Notice that w cannot lie above �−

since otherwise p is t-protected and hence Algorithm 1 finishes before reaching w
yielding a contradiction. Thus, w lies below �−. 	


4 One Empty Quadrant

Before stepping into the proof of Lemma 1, we need one last definition. Given
a point p of P , the max1-path of p is the longest x-monotone path having p
as an endpoint that consists only of 1-edges and contains edge pp1. We restate
Lemma 1 using the notions of t-protected and s-t-path.

Lemma 1. Let s and t be two points of P such that t lies in C0(s). If the top-
right quadrant of S(s) is empty and s is t-protected, then there is an s-t-path in
the θ4-graph of P of length at most 18 · dL1(s, t).

Proof. Since s is t-protected, no point of P lies above s, to the right of s and
below �−; see the dark-shaded region in Fig. 5. Let R be the smallest axis-aligned
rectangle enclosing s and t and let k be the number of t-protected points inside R,
by the general position assumption, these points are strictly contained in R. We
prove the lemma by induction on k.

�+ �−

t

s0

S(s)

s

R

S(s0)

Fig. 5. Base case

Base Case: Assume that R contains no t-
protected point, i.e., k = 0. We claim that R
must be empty and we prove it by contradic-
tion. Let q be a point in R and note that q
cannot lie above �− as it would be t-protected
yielding a contradiction. If q lies below �−, we
can follow the max1-path from q until reaching
a t-protected point p lying below �−. Since s is
t-protected, p must lie inside R which is also a
contradiction. Thus, R must be empty.

Assume that s0 �= t since otherwise the result
is trivial. As R is empty and s0 �= t, s0 lies below
t and above �+. Moreover, no point of P lies
above t, below �− and inside S(s0) since s is t-protected. Thus, if we think of the
set of points P rotated 90 degrees clockwise around t, Lemma 6 and Lemma 7
guarantee the existence of an s0-t-path γ of length at most 3 ·dL1(s0, t). Since s0
lies above �+, dL1(s, s0) ≤ dL1(s, t). Furthermore, dL1(s0, t) ≤ 2 · dL1(s, t) as s0
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lies inside S(s). Thus, by joining ss0 with γ, we obtain an s-t-path of length at
most 7 · dL1(s, t).

Inductive Step: We aim to show the existence of a path γ joining s with
a t-protected point w ∈ R such that the length of γ is at most 18 · dL1(s, w).
If this is true, we can merge γ with the w-t-path ϕ existing by the induction
hypothesis to obtain the desired s-t-path with length at most 18 · dL1(s, t). We
analyze two cases depending on the position of s0 with respect to R.

�−

s0

R

wσs→x

t

s

Fig. 6. Case 1

Case 1. Assume that s0 lies inside R. If s0
lies above �−, then s0 is t-protected and hence
we are done after applying our induction hypoth-
esis on s0. If s0 lies below �−, then we can follow
its max1-path to reach a t-protected point w that
must lie inside R as s is t-protected. By running
Algorithm 1 on s and w, we obtain a path σs→w

that goes through the edge ss0 and then follows
the max1-path of s0 until reaching w; see Fig. 6.

Since s is t-protected and w lies below �−, s is
also w-protected. Therefore, Lemma 6 guarantees that |σs→w | ≤ 3 ·dL1(s, w). By
induction hypothesis on w, there is a w-t-path ϕ such that |ϕ| ≤ 18 · dL1(w, t).
As w lies in R, by joining σs→w with ϕ we obtain the desired s-t-path of length
at most 18 · dL1(s, t).

Case 2. Assume that s0 does not lie in R. This implies that s0 lies below t.
Assume also that σs→t does not reach t; otherwise we are done since |σs→t| ≤
3 · dL1(s, t). Thus, as the top-right quadrant of S(s) is empty, σs→t ends at a
t-protected point z lying in the bottom-right quadrant of S(s). We consider two
sub-cases depending on whether σs→t contains a point inside R or not.

�+

�−

s0

R
w

z
σs→x

t

s

Fig. 7. Case 2.1

Case 2.1. If σs→t contains a point inside R,
let w be the first t-protected point of σs→t after
s and note that w also lies inside R since s is
t-protected. Notice that the part of σs→t going
from s to w is in fact equal to σs→w since w lies
above t and only 1-edges were followed after s0 by
Step 4 of Algorithm 1; see Fig. 7. Thus, as s is also
w-protected, the length of σs→w is bounded by
3 ·dL1(s, w) by Lemma 6. Hence, we can apply the
induction hypothesis on w as before and obtain
the desired s-t-path.

Case 2.2. If σs→t does not contain a point in-
side R, then σs→t follows only 1-edges from s0 until reaching z in the bottom-
right quadrant of S(s); see Fig. 8(a) for an illustration of this case.

Let P ∗ be the set of points obtained by reflecting P on line �+. Since this
reflection preserves 1-edges, it preserves t-protected points. Therefore, if z∗ is
the reflection of z, then z∗ lies in C2(t) and is also t-protected. Hence, we can
use Algorithm 1 to produce a path σz∗→t in the θ4-graph of P ∗. Let γz→t be the
path in the θ4-graph of P obtained by reflecting σz∗→t on �+. Note that γz→t is
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a path that uses only 1- and 2-edges. Because the top-right quadrant of S(s) is
empty, γz→t ends at a point w such that w is either equal to t or w lies in the top-
left quadrant of S(s); see Fig. 8(a). Since z lies inside S(s), dL1(z, t) ≤ 2·dL1(s, t).
Hence, by Lemma 6, the length of σs→t ∪ γz→t is at most
|σs→t|+|γz→t| ≤ 3·dL1(s, t)+3·dL1(z, t) ≤ 3·dL1(s, t)+6·dL1(s, t) = 9·dL1(s, t).

Two cases arise: If γz→t reaches t (w = t), then we are done since σs→t∪γz→t

joins s with t through z and its length is at most 18 · dL1(s, t).
If γz→t does not reach t (w �= t), then w lies below �− by Lemma 7 applied

on path σz∗→t. Moreover, as s is t-protected, no point in C1(s) can be reached
by γz→t and hence w must lie inside R. We claim that dL1(s, t) ≤ 2 · dL1(s, w).
If this claim is true, |σs→t ∪ γz→t| ≤ 9 · dL1(s, t) ≤ 18 · dL1(s, w). Furthermore,
by the induction hypothesis, there is a path ϕ joining w with t of length at most
18 · dL1(w, t). Consequently, by joining σs→t, γz→t and ϕ, we obtain an s-t-path
of length at most 18 · dL1(s, w) + 18 · dL1(w, t) = 18 · dL1(s, t).

ρ
�+

�−

t

s0 z

s

a

s⊥Q

Q+ w

S(z)

�+

�−

t

s0

S(s)

s

R

zσs→t σs→t

γz→t

w

γz→t

a) b)

Fig. 8. a) Case 2.2 in the proof of Lemma 1, path σs→t has no point inside R and
reaches a point z lying in the bottom-right quadrant of S(s). b) The inductive argument
proving that the point w, reached after taking the path γz→t, lies outside of the triangle
Q+ containing all the points above ρ and below s. As s is t-protected, the region above
s and below ρ is empty.

To prove that dL1(s, t) ≤ 2 ·dL1(s, w), let s⊥ be the orthogonal projection of s
on �+. Let ρ be the perpendicular bisector of the segment ss⊥ and notice that
for every point y in C0(s), dL1(s, t) ≤ 2 · dL1(s, y) if and only if y lies below ρ.

Let Q be the minimum axis-aligned square containing s and s⊥. Note that ρ
splits Q into two equal triangles Q+ and Q− as one diagonal of Q is contained
in ρ. Assume that Q+ is the triangle that lies above ρ. Notice that all points
lying in C0(s) and above ρ are contained in Q+; see Fig. 8(b). We prove that w
lies outside of Q+ and hence, that w must lie below ρ.

If s0 lies below ρ, then the empty triangle Δ0(s) contains Q
+ forcing w to lie

below ρ. Assume that s0 lies above ρ. In this case, z lies above s0 as we only
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followed 1-edges to reach z in the construction of σs→t by Step 4 of Algorithm 1.
Let a be the intersection of �+ and the ray shooting to the left from z. Notice
that w must lie to the right of a as the path γz→t is contained in the square S(z)
and a is one of its corners. As z lies above s0 and s0 lies above s⊥, we conclude
that a is above s⊥ and both lie on �+. Therefore, a lies to the right of s⊥,
implying that w lies to the right of s⊥ and hence outside of Q+. As we proved
that w lies below ρ, we conclude that dL1(s, t) ≤ 2 · dL1(s, w). 	


5 Lower Bound

We show how to construct a lower bound of 7 for the θ4-graph. We start with two
points u and w such that w lies in C2(u) and the difference of their x-coordinates
is arbitrarily small. To construct the lower bound, we repeatedly replace a single
edge of the shortest u-w-path by placing points in the corners of the empty
triangle(s) associated with that edge. The final graph is shown in Fig. 9.

We start out by removing the edge between u and w by placing two points,
one inside Δ2(u) and one inside Δ0(w), both arbitrarily close to the corner that
does not contain u nor w. Let v1 be the point placed in Δ2(u). Placing v1 and
the other point in Δ0(w) removed edge uw, but created two new shortest paths,
uv1w being one of them. Hence, our next step is to extend this path.

u

w

v1

v2 v3

v4

Fig. 9. A lower bound for the θ4-graph. One of the shortest paths from u to w goes
via v1, v2, v3, and v4.

We remove edge v1w (and its equivalent in the other path) by placing a point
arbitrarily close to the corner of Δ1(v1) and Δ3(w) that is farthest from u. Let
v2 be the point placed inside Δ1(v1). Hence, edge v1w is replaced by the path
v1v2w. Next, we extend the path again by removing edge v2w (and its equivalent
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edge in the other paths). Like before, we place a point arbitrarily close to the
corner of Δ0(v2) and Δ2(w) that is farthest from u. Let v3 be the point placed
in Δ0(v2). Hence, edge v2w is replaced by v2v3w.

Finally, we replace edge v3w (and its equivalent edge in the other paths). For
all paths for which this edge lies on the outer face, we place a point in the corner
of the two empty triangles defining that edge. However, for edge v3w which does
not lie on the outer face, we place a single point v4 in the intersection of Δ3(v3)
and Δ1(w). In this way, edge v3w is replaced by v3v4w. When placing v4, we
need to ensure that no edge uv4 is added as this would created a shortcut. This is
easily achieved by placing v4 such that it is closer to v3 than to w. The resulting
graph is shown in Fig. 9.

Lemma 8. The stretch factor of the θ4-graph is at least 7.

Proof. We look at path uv1v2v3v4w from Fig. 9. Edges uv1, v3v4, and v4w have
length |uw|−ε and edges v1v2 and v2v3 have length 2·|uw|−ε, where ε is positive
and arbitrarily close to 0. Hence, the stretch factor of this path is arbitrarily
close to 7. 	
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