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Matias Korman ‖ ∗∗ André van Renssen ‡ Perouz Taslakian ††3

Sander Verdonschot ‡4

Abstract5

In this paper, we show that the θ-graph with three cones is connected. We also provide an6

alternative proof of the connectivity of the Yao graph with three cones.7

1 Introduction8

Introduced independently by Clarkson [7] in 1987 and Keil [10] in 1988, the θ-graph of a set P of9

points in the plane is constructed as follows. We consider each point p ∈ P and partition the plane10

into m ≥ 2 cones (regions in the plane between two rays originating from the same point) with11

apex p, each defined by two rays at consecutive multiples of 2π/m radians from the negative y-axis;12

see Figure 1 for an illustration. We label the cones C0 through Cm−1, in clockwise order around p,13

starting from the cone whose angular bisector aligns with the positive y-axis from p if m is odd,14

or having this axis as its left boundary if m is even. If the apex is not clear from the context, we15

use Cp
i to denote the cone Ci with apex p. We sometimes refer to Cp

i as the i-cone of p. To build16

the θ-graph, we consider each point p and connect it by an edge with the closest point in each of17

its cones. However, instead of using the Euclidean distance, we measure distance by orthogonally18

projecting each point onto the angle-bisector of that cone. The closest point to p in its i-cone is19

then the point in Cp
i whose projection has the smallest Euclidean distance to p.20

We use this definition of distance in the remainder of the paper, except for Section 4, which21

deals with Yao graphs. For simplicity, we assume that no two points of P lie on a line parallel to22

the boundary of a cone or perpendicular to the angular bisector of a cone, guaranteeing that each23

point connects to at most one point in each cone. We call the θ-graph with m cones the θm-graph.24

For θ-graphs with an even number of cones, proving connectedness is easy. As the first m/225

cones cover exactly the right half-plane, each point will have an edge to a point to its right, if such a26

point exists. Thus, we can find a path from any point to the rightmost point and, by concatenating27
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Figure 1: Left: A point p and its three cones in the θ3-graph. Right: Point p adds an edge to the closest
point in each of its cones, where distance is measured by projecting points onto the bisector of the cone.

these, a path between every pair of points. Unfortunately, if m is odd this property does not hold,28

as no set of cones covers exactly the right half-plane. Therefore, a point is not guaranteed to have29

an edge to a point to its right, even if such a point exists.30

The fact that θ-graphs with more than 6 cones are connected has been known for a long time.31

In fact, they even guarantee the existence of a short path between every pair of points. The length32

of this path is bounded by a constant times the straight-line Euclidean distance between the two33

points [4, 6, 7, 10, 12]. Graphs that have this property are called geometric spanners. For more34

information on geometric spanners, see the book by Narasimhan and Smid [11].35

For a long time, very little was known about θ-graphs with fewer than 7 cones. Bonichon et36

al. [3] broke ground in this area in 2010, by showing that the θ6-graph is a geometric spanner. Sub-37

sequently, both the θ4- and θ5-graphs have been shown to be geometric spanners [2, 5]. El Molla [9]38

already showed that the θ2- and θ3-graphs are not geometric spanners. It is straightforward to39

verify that the θ2-graph is connected which leaves the θ3-graph as the only θ-graph for which con-40

nectedness has not been proven. In this paper, we settle this question by showing that the θ3-graph41

is always connected.42

The question of connectedness about the θ3-graph is interesting because the θ3-graph has some43

unique properties that cause standard proof techniques for θ-graphs to fail. As such, we hope that44

the techniques we develop here will lead to more insight into the structure of other θ-graphs. As45

an example, most proofs for a larger number of cones show that the θ-routing algorithm (always46

follow the edge to the closest vertex in the cone that contains the destination) returns a short47

path between any two points. But in the θ3-graph, θ-routing is not guaranteed to ever reach the48

destination. The smallest point set that exhibits this behavior has three points, such that for each49

point, both other points lie in the same cone; see Figure 2. In fact, this example shows not only50

that this exact routing strategy fails; it shows that if we consider the edges to be directed (from51

the point that added them, to the closest point in its cone), the graph is not strongly connected.52

Therefore, our proof requires more global methods than previous proofs on θ-graphs.53

Most proofs for a larger number of cones use induction on the distance between points or on the54

size of the empty triangle between a point and its closest point. In the θ3-graph however, both of55

these measures can increase when we follow an edge. Thus, applying induction on these distances56

seems a difficult task. An induction on the number of points similarly fails, as inserting a new point57
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Figure 2: Left: A point set for which θ-routing does not find a path from a to c, as it keeps cycling between
a and b. Right: The directed version of the graph is not strongly connected, as there is no path from either
a or b to c.

may remove edges that were present before, and it is not obvious that the endpoints of those edges58

are still connected in the new graph.59

The θ3-graph is strongly related to the Y3-graph, where each point also connects to the closest60

point in each cone, but the distance measure is the standard Euclidean distance. This graph was61

shown to be connected by Damian and Kumbhar [8]. Their proof uses induction on a rhomboid62

distance-measure that was tailored specifically for the Y3-graph. Since the ‘closest’ point for the θ3-63

graph can be much further away than in the Y3-graph, this method of induction does not translate64

to the θ3-graph, either. Conversely, we show that our proof extends to the Y3-graph, providing an65

alternative proof for its connectivity.66

2 Properties of the θ3-graph67

For i ∈ {0, 1, 2}, the edge connecting a point with its closest point in cone Ci is called an i-edge.68

Note that an edge can have one or two roles depending on the position of its endpoints. An example69

is depicted in Figure 2, where edge ab is both the 0-edge of a and the 1-edge of b.70

Lemma 1. For all i ∈ {0, 1, 2}, no two i-edges of the θ3-graph can cross.71

Proof. We consider only 0-edges of P ; the proof is analogous for 1- and 2-edges. For a contradiction,72

assume that there are two 0-edges that cross at a point s. Call these edges u1v1 and u2v2, such73

that v1 is in the 0-cone of u1 and v2 in the 0-cone of u2. Assume without loss of generality that74

the y-coordinate of v1 is smaller than that of v2; see Figure 3 for an illustration. Because s lies75

on segments u1v1 and u2v2, s lies in the 0-cones of both u1 and u2. Therefore, the 0-cone of s76

is contained in the intersection of the 0-cones of u1 and u2. As v1 lies in cone C0 of s, point v177

lies in cone C0 of u2 as well. Because we assumed that the y-coordinate of v1 is less than that of78

v2, we conclude that v1 is closer to u2 than v2. Thus, the edge u2v2 is not a 0-edge, yielding a79

contradiction.80

We say that a cone is empty if it contains no point of P in its interior. A point having an empty81

i-cone is called an i-sink .82

Given a point p of P , the i-path from p is defined recursively as follows: If the i-cone of p is83

empty, the i-path from p consists of the single point p. Otherwise, let q be the closest point to p in84

its i-cone. The i-path from p is defined as the union of edge pq with the i-path from q.85
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Figure 3: Two 0-edges u1v1 and u2v2 such that v1 ∈ Cu1
0 and v2 ∈ v1 ∈ Cu2

0 cannot cross because the lowest
point among v1 and v2 will be adjacent to both u1 and u2.

Lemma 2. Every i-path of the θ3-graph is well-defined and has an i-sink at one of its endpoints.86

Proof. We consider only 0-paths; the proof is analogous for the other paths. A 0-path from a point87

p is well defined because the closest point in the 0-cone of p always lies above p. Therefore, the88

y-coordinates of the points in the 0-path from p form a monotonically increasing sequence. As P89

is a finite set, the recursion must end at a point having an empty 0-cone.90
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Figure 4: Empty cones cannot be crossed by edges of the θ3-graph.

Lemma 3. If a cone of a point is empty, then no edge of the θ3-graph can cross this cone.91

Proof. We consider only 0-cones for this proof; analogous arguments hold for the other cones. Let92

u be a point of P with an empty 0-cone. For a contradiction, assume that there exists an edge93

xy that crosses Cu
0 . For this to happen, x and y have to lie in opposite sectors of the double94

wedge obtained by extending the boundary segments of Cu
0 ; see Figure 4. Assume without loss of95

generality that x lies in the left wedge. Then x lies in Cu
2 while y lies in Cu

1 . In particular, this96

implies that both u and y lie in Cx
1 .97

Let ` be the line through u perpendicular to the bisector of Cx
1 . For the edge xy to exist, the98

projection of y on the bisector of Cx
1 must be closer to x than the projection of u. In other words, y99

must lie to the left of `. However, all points lying to the left of ` are contained in Cu
0 ∪Cu

2 , yielding100

a contradiction as y ∈ Cu
1 .101
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Figure 5: A 1-barrier, defined by the 1-path joining a with a′, splits the remaining points into two sets such
that no two points in different sets can be joined by a 1-path.

As a consequence of Lemmas 1 and 3, two sinks connected by an i-path partition the remaining102

points into two sets such that no i-path can connect a point in one set to a point in the other set,103

as any such path would cross either the i-path between the sinks, or the empty cone of one of the104

sinks. Such a construction is called an i-barrier ; see Figure 5 for an illustration.105

3 Proving connectedness106

In this section we prove that the θ3-graph of any given point set is connected. We start by proving107

that three given 0-sinks in a specific configuration are always connected. We then prove that if the108

θ3-graph has at least two disjoint connected components, there exist three 0-sinks that are in this109

configuration and are not all in the same component, leading to a contradiction.110

Although the edges of the θ3-graph are not directed, by Lemma 2 we can think of an i-path111

as oriented towards the i-sink it reaches. An i-path from a that ends at an i-sink b is denoted by112

a→ b. The following lemma is depicted in Figure 6.113

Lemma 4. Let a, b, and c be three 0-sinks such that (i) a lies to the left of b and b lies to the left114

of c, and (ii) the 1-path from a ends at a 1-sink a′ whose 0-path ends at c (a′ may be equal to c).115

Then, a, b, and c belong to the same connected component.116

b

1 0
1

0

a c

a′

0

b′
1

a
c

b

a′

Figure 6: Left: The configuration of points described in Lemma 4. Right: The configuration in the base
case of the induction where no 0-sink lies to the right of c.
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Proof. Because there is a path from a to c via a′, a and c must be in the same component. We117

show that b belongs to this same connected component.118

The proof proceeds by induction on the number of 0-sinks to the right of c. In the base case,119

there are no 0-sinks to the right of c. Consider the 1-sink b′ at the end of the 1-path from b; see120

Figure 6 (right). Because the 1-path a→ a′ forms a 1-barrier, b′ cannot lie to the left of a′.121

If a′ = c, then a′ is both a 1-sink and a 0-sink. This means that there can be no points to the122

right of a′. Therefore b′ must also be equal to a′. But then b is in the same connected component as123

a and we are done. So assume that this is not the case, that is, a′ 6= c and b′ lies to the right of a′.124

Then the 1-path b → b′ also has to cross the 0-path a′ → c, as otherwise a′ → c crosses the125

empty cone of b′, which is impossible by Lemma 3, or b′ lies on a′ → c and we are done. Moreover,126

because a′ → c forms a 0-barrier, the 0-path from b′ cannot end to the left of c. However, since127

there are no 0-sinks to the right of c, the 0-path from b′ must end at c. Thus, there is a path128

connecting b and c, which proves the lemma in the base case.129

a
c

a′

1

0

1

d

0

b

b′

Figure 7: The configuration of the inductive step where the induction hypothesis can be applied on 0-sinks
b, c and d.

For the inductive step, let k be the number of 0-sinks to the right of c and assume that the130

lemma holds for any triple of 0-sinks with fewer than k 0-sinks to their right. By the same argument131

as in the base case, we have a 1-path from b to a 1-sink b′ that lies to the right of a′. Now consider132

the 0-sink d at the end of the 0-path from b′; see Figure 7. Note that b′ and d could be the same133

vertex.134

Since the 0-path a′ → c forms a 0-barrier, d cannot lie to the left of c. If d and c are the same135

point, we have a path connecting b and c as in the base case, so assume that this is not the case.136

Thus d lies to the right of c. Now b, c, and d form a triple of 0-sinks that satisfy criteria (i) and (ii).137

And since d is a 0-sink to the right of c, there are fewer than k 0-sinks to the right of d. Thus, by138

induction, we have that b is in the same connected component as c, which proves the lemma.139

Theorem 5. The θ3-graph is connected.140

Proof. Assume for a contradiction that there exists a point set P whose θ3-graph G is not connected.141

From each point, we can follow its 0-path to a 0-sink. Therefore, G must contain at least one 0-sink142

for each connected component. Let a be the leftmost 0-sink, and let A be the connected component143

of G that contains a. Now let b be the leftmost 0-sink that does not belong to A.144

We use Lemma 4 to show that, in fact, b must belong to A as well. Before we can do this, we145

need to define two barriers. The first barrier is formed by the 2-path from b, ending at a 2-sink146
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Figure 8: Two 0-sinks a and b are assumed to lie in different components such that both a and b are the
leftmost 0-sinks in their component. The 1-path from a ends at a 1-sink a′ whose 0-path ends at a 0-sink d
lying to the right of b. The 0-sinks a, b and d jointly satisfy the criteria of Lemma 4.

b′. Because a lies in Cb
2, point b does not have an empty 2-cone and hence, b′ differs from b. The147

second barrier is formed by the 0-path from b′, which ends at a 0-sink c; see Figure 8. Since b is148

the leftmost 0-sink that does not belong to A, either c and b are the same point, or c lies to the149

right of b.150

Now consider the 1-sink a′ at the end of the 1-path from a. This point has to lie to the right151

of both barriers b → b′ and b′ → c, as otherwise these paths would cross the empty cone C1 of a′,152

which is not allowed by Lemma 3. Because the path a→ a′ is a 1-path and the barriers in question153

consist of 0- and 2-edges, these crossings are possible. Now let d be the 0-sink at the end of the154

0-path from a′. Since this path cannot cross the 0-barrier b′ → c, d cannot lie to the left of c.155

Because d belongs to component A, if c and d are the same point, c belongs to component A.156

Otherwise, if c and d are distinct points, then a, b, and d jointly satisfy the criteria of Lemma 4,157

which gives us that b belongs to component A as well—a contradiction since b is the leftmost 0-sink158

that does not belong to A. This contradiction comes from our assumption that G is not connected.159

Therefore, the θ3-graph of any point set is connected.160

4 The Y3-graph161

The construction of the Y3-graph is very similar to that of the θ3-graph. The only difference is the162

way distance is measured: the θ-graph uses the length of the projection onto the bisector, whereas163

the Yao graph uses the Euclidean distance. Therefore, in every cone a point is connected to its164

closest Euclidean neighbor. We denote by |pq| the Euclidean distance between two points p and q.165

We show that, like the θ3-graph, the Y3-graph is connected. To this end, we re-introduce166

the three basic lemmas we had for the θ3-graph and show that the same properties hold for the167

Y3-graph. We first prove a geometric auxiliary lemma depicted in Figure 9.168
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Figure 9: Point x lies to the left of point u and the arcs vr′ and r′z are enclosed by circle C centered at u,
having radius |uv|.

Lemma 6. Given a non-vertical line b and a circle C centered at a point u on b, let v and z be169

two points on C such that b bisects the segment vz. Let x be a point on b and let D be the circle170

centered at x with radius |xv|. If x lies to the left of u, then the right-side arc of D between v and171

z is enclosed by C; otherwise, the left-side arc of D between v and z is enclosed by C.172

Proof. Assume that x lies to the left of u; the proof of the other case is analogous. Let r and r′ be173

the respective right intersections of C and D with line b; see Figure 9. Hence, arcs vr′ and r′z lie174

either entirely inside C or entirely outside C. Therefore, it suffices to show that r′ lies inside C,175

i.e., |ur′| ≤ |ur|. Since x lies to the left of u, we can rewrite |ur′| as |xr′| − |xu|. Since |xr′| = |xv|176

and |ur| = |uv|, we thus need to show that |xv| ≤ |xu| + |uv|. This follows from the triangle177

inequality.178

The proof of the following lemma is similar to that of Lemma 1.179

Lemma 7. For all i ∈ {0, 1, 2}, no two i-edges of the Y3-graph can cross.180

Proof. We look at the 0-edges. The cases for the other edges are analogous. Let uv be a 0-edge181

such that v ∈ Cu
0 and assume without loss of generality that v lies to the right of u. We prove the182

lemma by contradiction, so assume that some 0-edge xy crosses uv and let y ∈ Cx
0 . Note that for183

xy to cross uv, Cx
0 must contain some part of uv. Hence v lies in Cx

0 .184

Let k be the line through the right boundary of Cu
0 and let l be the line through u, perpendicular185

to k. We consider four cases, depending on the location of x with respect to u; see Figure 10 (left):186

(a) x ∈ Cu
0 to the left of the line uv, (b) x ∈ Cu

2 above k, (c) x ∈ Cu
2 below k or x ∈ Cu

1 below l,187

(d) x ∈ Cu
1 above l or x ∈ Cu

0 to the right of the line uv.188

Case (a): x ∈ Cu
0 to the left of the line uv. Since v lies inside Cx

0 and v lies to the right of u,189

x lies in the circle centered at u having radius |uv|. Thus, x lies closer to u than v, contradicting190

the existence of edge uv.191

Case (b): x ∈ Cu
2 above k. We apply Lemma 6 as follows, see Figure 10 (right): Let C be192

the circle centered at u having radius |uv|. Let b be the line through u and x, and let z be the193

reflection of v in b. Note that this implies that z lies outside Cu
0 . Let D be the circle centered at194

x having radius |xv|. Since x lies to the left of u, Lemma 6 gives us that the right arc vz of circle195
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Figure 10: Left: The four cases. Right: The case when x lies in Cu
2 and above k.

D is enclosed by circle C. Since the area in which y must lie for xy to cross uv is bounded by the196

right boundary of Cx
0 , edge uv, and the right arc vz of circle D, it is enclosed by C. Therefore, any197

such point would lie in Cu
0 and be closer to u than v, contradicting the existence of edge uv.198

Case (c): x ∈ Cu
2 below k or x ∈ Cu

1 below l; see Figure 11 (left). Since u lies in Cx
0 , y needs199

to be closer to x than u for edge xy to exist. Hence it must lie inside the circle C centered at x200

with radius |xu|. Look at the lower half-plane defined by the line tangent to C at u and note that201

C is contained in this half-plane. However, the half-plane does not intersect Cu
0 to the right of u202

and hence no point y inside the half-plane can be used to form an edge xy that crosses uv.203

Case (d): x ∈ Cu
1 above l or x ∈ Cu

0 to the right of the line uv. We apply Lemma 6 as follows,204

see Figure 11 (right): Let C be the circle centered at u having radius |uv|. Let b be the line through205

u and x, and let z be the reflection of v in b. Note that z lies outside Cx
0 . Let D be the circle206

centered at x having radius |xv|. Since x lies to the right of u, Lemma 6 gives us that the left207

arc vz of circle D is enclosed by circle C. Since the area in which y must lie for xy to cross uv is208

bounded by edge uv, the left arc vz of circle D, and either the left boundary of Cx
0 (if u /∈ Cx

0 ) or209

the line ux (if u ∈ Cx
0 ), it is enclosed by C. Therefore, there does not exist a point y ∈ Cx

0 such210

that xy intersects uv.211

Lemma 8. Every i-path of the Y3-graph is well-defined and has an i-sink as one of its endpoints.212

Proof. The proof of this lemma is analogous to Lemma 2 for the θ3-graph.213

Lemma 9. If a cone of a point is empty, then no edge in the Y3-graph can cross this cone.214

Proof. We assume without loss of generality that Cu
0 does not contain any points. We prove the215

lemma by contradiction, so assume that there exists an edge xy that crosses Cu
0 . Since no edge216

between two points in the same cone can cross another cone, let x ∈ Cu
2 and y ∈ Cu

1 .217

Point y cannot lie in Cx
0 , since either Cx

0 does not intersect Cu
1 (if u /∈ Cx

0 ) or the line segment218

between x and y does not intersect Cu
0 (if u ∈ Cx

0 ). Hence y must lie in Cx
1 .219

If u ∈ Cx
0 , Cx

1 does not intersect Cu
0 and thus the line segment between x and y cannot intersect220

Cu
0 either. Therefore both u and y lie in Cx

1 . Let C be the circle centered at x with radius |xu|.221

For the edge xy to exist, y must be closer to x than u, which means that y must lie in C. Note222

that C is contained in the half-plane to the left of the tangent to C at u.223
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Figure 11: Left: The case when x ∈ Cu
2 below k or x ∈ Cu

1 below l. Right: The case when x ∈ Cu
1 above l

or x ∈ Cu
0 to the right of the line uv.

If x lies on or above the horizontal line through u, the half-plane does not intersect Cu
1 . If x224

lies below the horizontal line through u, the half-plane does not intersect Cu
1 above u and thus xy225

would not cross Cu
0 . Since y is enclosed by C, C is contained in the half-plane, and there is no226

point p in the half-plane such that p ∈ Cu
1 and px crosses Cu

0 , xy cannot cross Cu
0 either.227

Using Lemmas 7, 8 and 9, the proof of Theorem 5 translates directly to the Y3-graph yielding228

the following result.229

Theorem 10. The Y3-graph is connected.230
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