
Optimal detection of intersections between convex polyhedra1

Luis Barba∗† Stefan Langerman∗‡2

Abstract3

For a polyhedron P in Rd, denote by |P | its combinatorial complexity, i.e., the number4

of faces of all dimensions of the polyhedra. In this paper, we revisit the classic problem of5

preprocessing polyhedra independently so that given two preprocessed polyhedra P and Q in6

Rd, each translated and rotated, their intersection can be tested rapidly.7

For d = 3 we show how to perform such a test in O(log |P | + log |Q|) time after linear8

preprocessing time and space. This running time is the best possible and improves upon the9

last best known query time of O(log |P | log |Q|) by Dobkin and Kirkpatrick (1990).10

We then generalize our method to any constant dimension d, achieving the same optimal11

O(log |P | + log |Q|) query time using a representation of size O(|P |bd/2c+ε) for any ε > 012

arbitrarily small. This answers an even older question posed by Dobkin and Kirkpatrick 3013

years ago.14

In addition, we provide an alternative O(log |P |+ log |Q|) algorithm to test the intersection15

of two convex polygons P and Q in the plane.16

1 Introduction17

Constructing or detecting the intersection between geometric objects is probably one of the first18

and most important applications of computational geometry. It was one of the main questions19

addressed in Shamos’ seminal paper that lay the grounds of computational geometry [21], the20

first application of the plane sweep technique [22], and is still the topic of several volumes being21

published today.22

It is hard to overstate the importance of finding efficient algorithms for intersection testing23

or collision detection as this class of problems has countless applications in motion planning,24

robotics, computer graphics, Computer-Aided Design, VLSI design and more. For information on25

collision detection refer to surveys [14, 16] and to Chapter 38 of the Handbook of Computational26

Geometry [13].27

The first problem to be addressed is to compute the intersection of two convex objects. In this28

paper we focus on convex polygons and convex polyhedra (or simply polyhedra). Let P and Q be29

two polyhedra to be tested for intersection. Let |P | and |Q| denote the combinatorial complexities30

of P and Q, respectively, i.e., the number of faces of all dimensions of the polygon or polyhedra31

(vertices are 0-dimensional faces while edges are 1-dimensional faces). Let n = |P | + |Q| denote32

the total complexity.33

In the plane, Shamos [21] presented an optimal Θ(n)-time algorithm to construct the intersec-34

tion of a pair of convex polygons. Another linear time algorithm was later presented by O’Rourke35

et al. [20]. In 3D space, Muller and Preparata [19] proposed an O(n log n) time algorithm to test36

whether two polyhedra in three-dimensional space intersect. Their algorithm has a second phase37

which computes the intersection of these polyhedra within the same running time using geomet-38

ric dualization. Dobkin and Kirpatrick [8] introduced a hierarchical data structure to represent39

a polyhedra that allows them to test if two polyhedra intersect in linear time. In a subsequent40

∗Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium {lbarbafl,slanger}@ulb.ac.be
†School of Computer Science, Carleton University, Ottawa, Canada
‡Directeur de recherches du F.R.S.-FNRS.

1

paper, Chazelle [2] presented an optimal linear time algorithm to compute the intersection of two41

polyhedra in 3D-space.42

A natural extension of this problem is to consider the effect of preprocessing on the complexity43

of intersection detection problems. In this case, significant improvements are possible in the query44

time. It is worth noting that each object should be preprocessed separately which allows us to work45

with large families of objects and to introduce new objects without triggering a reconstruction of46

the whole structure.47

Chazelle and Dobkin [3, 4] were the first to formally define and study this class of problems and48

provided an algorithm running in O(log |P | + log |Q|) time to test the intersection of two convex49

polygons P and Q in the plane. An alternate solution was given by Dobkin and Kirkpatrick [7]50

with the same running time. Edelsbrunner [10] then used that algorithm as a preprocessing phase51

to find the closest pair of points between two convex polygons, within the same running time.52

Dobkin and Souvaine [9] extended these algorithms to test the intersection of two convex planar53

regions with piecewise curved boundaries of bounded degree in logarithmic time. These separation54

algorithms rely on an involved case analysis to solve the problem. In Section 2, we show an55

alternate (and hopefully simpler) algorithm to determine if two convex polygons P and Q intersect56

in O(log |P |+ log |Q|) time.57

In all these 2D algorithms, preprocessing is unnecessary if the polygon is represented by an58

array with the vertices of the polygon in sorted order along its boundary. In 3D-space (and in59

higher dimensions) however, the need for preprocessing is more evident as the traditional DCEL60

representation of the polyhedron is not sufficient to perform fast queries.61

In this setting, Chazelle and Dobkin [4] presented a method to preprocess a 3D polyhedron62

and use this structure to test if two preprocessed polyhedra intersect in O(log3 n) time. Dobkin63

and Kirkpatrick [7] unified and extended these results, showing how to detect if two independently64

preprocessed polyhedra intersect in O(log2 n) time. Both methods represent a polyhedron P by65

storing parallel slices of P through each of its vertices, and thus require O(|P |2) time, although66

space usage could be reduced using persistent data structures.67

In 1990, Dobkin and Kirkpatrick [6] proposed a fast query algorithm that uses the linear68

space hierarchical representation of a polyhedron P defined in their previous article [8]. Using69

this structure, they show how to determine in O(log |P | log |Q|) time if the polyhedra P and Q70

intersect. They achieve this by maintaining the closest pair between subsets of the polyhedra P71

and Q as the algorithms walks down the hierarchical representation. Unfortunately, the paper72

seems to have omitted an important case which would cause a naive implementation to take time73

Ω(|P | + |Q|) rather than the claimed bound. However, by combining different results from the74

same article, it seems the O(log |P | log |Q|) bound could be salvaged [15]. In Section 4, we detail75

the specific problem with the algorithm, and in Section 4 we show a simple modification of the76

data structure that overcomes this issue and restores all bounds claimed in that article.77

Whether the intersection of two preprocessed polyhedra P and Q can be tested in O(log |P |+78

log |Q|) time is an open question that was implicit in the paper of Chazelle and Dobkin [3] in79

STOC’80, and explicitly posed in 1983 by Dobkin and Kirkpatrick [7]. More recently, the open80

problem was listed again in 2004 by David Mount in Chapter 38 of the Handbook of Computational81

Geometry [13]. Together with this question in 3D-space, Dobkin and Kirkpatrick [7] asked if it is82

possible to extend these result to higher dimensions, i.e., to independently preprocess two polyhedra83

in Rd such that their intersection could be tested in O(log n) time.84

These running times are best possible as, even in the plane, testing if a point intersects a regular85

m-gon M has a lower bound of Ω(logm) in the algebraic decision tree model.86

In this paper, we match this lower bound by showing how to independently preprocess polyhedra87

P and Q in any bounded dimension such that their intersection can be tested in O(log n) time1. In88

Section 4, we show how to preprocess a polyhedron P ∈ R3 in linear time to obtain a linear space89

representation. In Section 5 we provide an algorithm that, given any translation and rotation of90

two preprocessed polyhedra P and Q in R3, tests if they intersect in O(log |P |+ log |Q|) time. In91

1In this paper, all algorithms are in the real RAM model of computation.

2

Section 6 we generalize our results to any constant dimension d and show a representation that92

allows to test if two polyhedra P and Q in Rd (rotated and translated) intersect in O(log |P | +93

log |Q|) time. The space required by the representation of a polyhedron P is then O(|P |bd/2c+ε)94

for any small ε > 0. This increase in the space requirements for d ≥ 4 is not unexpected as the95

problem studied here is at least as hard as performing halfspace emptiness queries for a set of m96

points in Rd. For this problem, the best known log-query data structures use roughly O(mbd/2c)97

space [17], and super-linear space lower bounds are known for d ≥ 5 [12].98

2 Algorithm in the plane99

Let P and Q be two convex polygons in the plane with n and m vertices, respectively. We assume100

that a convex polygon is given as an array with the sequence of its vertices sorted in clockwise order101

along its boundary. Let V (P) and E(P) be the set of vertices and edges of P , respectively. Let102

∂P denote the boundary of P . Analogous definitions apply for Q. As a warm-up, we describe an103

algorithm to determine if P and Q intersect whose running time is O(log n+ logm). Even though104

algorithms with these running time already exists in the literature, they require an involved case105

analysis whereas our approach avoids them and is arguably easier to implement. Moreover, it106

provides some intuition for the higher-dimension algorithms presented in subsequent sections.107

For each edge e ∈ E(Q), its supporting halfplane is the halfplane containing Q supported by108

the line extending e. Given a subset of edges F ⊆ E(Q), the edge hull of F is the intersection109

of the supporting halfplanes of each of the edges in F . Throughout the algorithm, we consider a110

triangle TP being the convex hull of three vertices of P and a triangle (possibly unbounded) TQ111

defined as the edge hull of three edges of Q; see Figure 1 for an illustration. Notice that TP ⊆ P112

while Q ⊆ TQ.113

Intuitively, in each round the algorithm compares TP and TQ for intersection and, depending114

on the output, prunes a fraction either of the vertices of P or of the edges of Q. Then, the triangles115

TP and TQ are redefined should there be a subsequent round of the algorithm.116

Let V ∗(P) and E∗(Q) respectively be the sets of vertices and edges of P and Q remaining after117

the pruning steps performed so far by the algorithm. Initially, V ∗(P) = V (P) while E∗(Q) = E(Q).118

After each pruning step, we maintain the correctness invariant which states that an intersection119

between P and Q can be computed with the remaining vertices and edges after the pruning. That120

is, P and Q intersect if and only if ch(V ∗(P)) intersects an edge of E∗(Q), where ch(V ∗(P))121

denotes the convex hull of V ∗(P).122

For a given polygonal chain, its vertex-median is a vertex whose removal splits this chain into123

two pieces that differ by at most one vertex. In the same way, the edge-median of this chain is the124

edge whose removal splits the chain into two parts that differ by at most one edge.125

The 2D algorithm126

To begin with, define TP as the convex hull of three vertices whose removal splits the boundary127

of P into three chains, each with at most d(n − 3)/3e vertices. In a similar way, define TQ as the128

edge hull of three edges of Q that split its boundary into three polygonal chains each with at most129

d(m− 3)/3e edges; see Figure 1.130

A line separates two convex polygons if they lie in opposite closed halfplanes supported by this131

line. After each round of the algorithm, we maintain one of the two following invariants: The132

separation invariant states that we have a line ` that separates TP from TQ such that ` is tangent133

to TP at a vertex v. The intersection invariant states that we have a point in the intersection134

between TP and TQ. Note that at least one of among separation and the intersection invariant135

must hold, and they only hold at the same time when TP is tangent to TQ. The algorithm performs136

two different tasks depending on which of the two invariants holds (if both hold, we choose a task137

arbitrarily).138

3

Separation invariant.139

If the separation invariant holds, then there is a line ` that separates TP from TQ such that ` is140

tangent to TP at a vertex v. Let `− be the closed halfplane supported by ` that contains TP and141

let `+ be its complement.142

Consider the two neighbors nv and n′v of v along the boundary of P . Because P is a convex143

polygon, if both nv and n′v lie in `−, then we are done as ` separates P from TQ ⊇ Q. Otherwise,144

by the convexity of P , either nv or n′v lies in `+ but not both. Assume without loss of generality145

that nv ∈ `+ and notice that the removal of the vertices of TP split ∂P into three polygonal chains.146

In this case, we know that only one of these chains, say cv, intersects `+. Moreover, we know that147

v is an endpoint of cv and we denote its other endpoint by u.148

Because Q is contained in `+, only the vertices in cv can define an intersection with Q. There-149

fore, we prune V ∗(P) by removing every vertex of P that does not lie on cv and maintain the150

correctness invariant. We redefine TP as the convex hull of v, u and the vertex-median of cv. With151

the new TP , we can test in O(1) time if TP and TQ intersect. If they do not, then we can compute152

a new line that separates TP from TQ and preserve the separation invariant. Otherwise, if TP and153

TQ intersect, then we establish the intersection invariant and proceed to the next round of the154

algorithm.155

Intersection invariant.156

If the intersection invariant holds, then TP ∩ TQ 6= ∅. In this case, let e1, e2 and e3 be the three157

edges whose edge hull defines TQ. Notice that if TP ⊆ P intersects ch(e1, e2, e3) ⊆ Q, then P and158

Q intersect and the algorithm finishes. Otherwise, there are three disjoint connected components159

in TQ \ ch(e1, e2, e3) and TP intersects exactly one of them; see Figure 1. Assume without loss of160

generality that TP intersects the component bounded by the lines extending e1 and e2 and let x161

be a point on the boundary of TQ in this intersection. Let C be the polygonal chain that connects162

e1 with e2 along ∂Q such that C passes through e3. We claim that to test if P and Q intersect,163

we need only to consider the edges on ∂Q \ C. To prove this claim, notice that if P intersects C164

at a point y, then the edge xy is contained in Q. Because x and y lie in two disjoint connected165

components of TQ \ch(e1, e2, e3), the edge xy also intersects ∂Q at another point lying on ∂Q \C.166

Therefore, an intersection between P and Q will still be identified even if we ignore every edge167

on C. That is, P and Q intersect if and only if P and ∂Q\C intersect. Thus, we can prune E∗(Q)168

by removing every edge along C while preserving the correctness invariant. After the pruning step,169

we redefine TQ as the edge hull of e1, e2 and the edge-median of the remaining edges of E(Q) after170

the pruning.171

If TP intersects TQ after being redefined, then the intersection invariant is preserved an we172

proceed to the next round of the algorithm. Otherwise, if TP does not intersect TQ, then we we173

can compute in O(1) time a line ` tangent to TP that separates TP from TQ. That is, the separation174

invariant is reestablished should there be a subsequent round of the algorithm.175

Q

TQ

P

TP

Figure 1: Two convex polygons P and Q and the triangles TP and TQ such that TQ ⊆ P and Q ⊆ TQ.
Moreover, TQ \Q consists of three connected components.

4

Theorem 2.1. Let P and Q be two convex polygons with n and m vertices, respectively. The176

2D-algorithm determines if P and Q intersect in O(log n+ logm) time.177

Proof. Each time we redefine TP , we take three vertices that split the remaining vertices of V ∗(P)178

into two chains of roughly equal length along ∂P . Therefore, after each round where the separation179

invariant holds, we prune a constant fraction of the vertices of V ∗(P). That is, the separation180

invariant step of the algorithm can be performed at most O(log n) times.181

Each time TQ is redefined, we take three edges that split the remaining edges along the boundary182

of Q into equal pieces. Thus, we prune a constant fraction of the edges of E∗(Q) after each round183

where the intersection invariant holds. Hence, this can be done at most O(logm) times before184

being left with only three edges of Q. Furthermore, the correctness invariant is maintained after185

each of the pruning steps.186

Thus, if the algorithm does not find a separating line or an intersection point, then after187

O(log n+ logm) steps, TP consists of the only three vertices left in V ∗(P) while TQ consist of the188

only three edges remaining from E∗(Q). If e1, e2 and e3 are the edges whose edge hull defines TQ,189

then by the correctness invariant we know that P and Q intersect if and only if TP intersects either190

e1, e2 or e3. Consequently, we can test them for intersection in O(1) time and determine if P and191

Q intersect.192

3 The polar transformation193

Let 0 be the origin of Rd, i.e., the point with d coordinates equal to zero. Throughout this194

paper, a hyperplane h is a (d − 1)-dimensional affine space in Rd such that for some z ∈ Rd,195

h = {x ∈ Rd : 〈z, x〉 = 1}, where 〈∗, ∗〉 represents the interior product of Euclidean spaces.196

Therefore, in this paper a hyperplane does not contain the origin. A halfspace is the closure of197

either of the two parts into which a hyperplane divides Rd, i.e., a halfspace contains the hyperplane198

defining its boundary.199

Given a point x ∈ Rd, we define its polar to be the hyperplane ρ(x) = {y ∈ Rd : 〈x, y〉 = 1}.200

Given a hyperplane h in Rd, we define its polar ρ(h) as the point z ∈ Rd such that h = {y ∈201

Rd : 〈z, y〉 = 1}. Let ρ0(x) = {y ∈ Rd : 〈x, y〉 ≤ 1} and ρ∞(x) = {y ∈ Rd : 〈x, y〉 ≥ 1} be the202

two halfspaces supported by ρ(x), where 0 ∈ ρ0(x) while 0 /∈ ρ∞(x). In the same way, h0 and h∞203

denote the halfspaces supported by h such that 0 ∈ h0 while 0 /∈ h∞ .204

Note that the polar of a point x ∈ Rd is a hyperplane whose polar is equal to x, i.e., the polar205

operation is self-inverse (for more information on this transformation see Section 2.3 of [23]). Given206

a set of points (or hyperplanes), its polar set is the set containing the polar of each of its elements.207

The following result is illustrated in Figure 2(a).208

Lemma 3.1. Let x and h be a point and a hyperplane in Rd, respectively. Then, x ∈ h0 if and209

only if ρ(h) ∈ ρ0(x). Also, x ∈ h∞ if and only if ρ(h) ∈ ρ∞(x). Moreover, x ∈ h if and only if210

ρ(h) ∈ ρ(x).211

Proof. Recall that h0 = {y ∈ Rd : 〈y, ρ(h)〉 ≤ 1}. Then, x ∈ h0 if and only if 〈x, ρ(h)〉 ≤ 1.212

Furthermore, 〈x, ρ(h)〉 ≤ 1 if and only if ρ(h) ∈ ρ0(x) = {y ∈ Rd : 〈y, x〉 ≤ 1}. That is, x ∈ h0 if213

and only if ρ(h) ∈ ρ0(x). Analogous proofs hold for the other statements.214

A polyhedron is a convex region in the d-dimensional space being the non-empty intersection215

of a finite set of halfspaces. Given a set of hyperplanes S in Rd, let ph∞ [S] = ∩h∈Sh∞ and216

ph0 [S] = ∩h∈Sh0 be two polyhedra defined by S. Let P ⊂ Rd be a polyhedron. Let V (P) denote217

the set of vertices of P and let S(P) be the set of hyperplanes that extend the (d− 1)-dimensional218

faces of P . Therefore, if P is bounded, then it can be seen as the convex hull of V (P), denoted by219

ch(V (P)). Moreover, if P contains the origin, then P can be also seen as ph0 [S(P)].220

To polarize P , let S(P) be the polar set of V (P), i.e., the set of hyperplanes being the polars of221

the vertices of P . Therefore, we can think of ph0 [S(P)] and ph∞ [S(P)] as the possible polarizations222

5

0

x

h

ρ(h)

ρ(x)

0

0

x

ρ(x)

x

ρ(x)

a) b) c)

ρ0(P)

P

ρ∞(P)

P

Figure 2: a) The situation described in Lemma 3.1. b) A polygon P containing the origin and its polarization
ρ0(P). The first statement of Lemma 3.3 is depicted. c) A polygon P that does not contains the origin and
its polarization ρ∞(P). The second statement of Lemma 3.3 is also depicted.

of P . For ease of notation, we let ρ0(P) and ρ∞(P) denote the polyhedra ph0 [S(P)] and ph∞ [S(P)],223

respectively. Note that P contains the origin if and only if ρ∞(P) = ∅ and ρ0(P) is bounded.224

Lemma 3.2. (Clause (v) of Theorem 2.11 of [23]) Let P be a polyhedron in Rd such that 0 ∈ P .225

Then, ρ0(ρ0(P)) = P .226

As a consequence of Lemma 3.1 we obtain the following result depicted in Figures 2(b) and 2(c).227

Lemma 3.3. Let P be a polyhedron in Rd and let x ∈ Rd. Then, x ∈ ρ0(P) if and only if P ⊆ ρ0(x).228

Moreover, x ∈ ρ∞(P) if and only if P ⊆ ρ∞(x).229

Proof. Let x be a point in ρ0(P). Notice that for every hyperplane s ∈ S(P), x ∈ s0 . Therefore,230

by Lemma 3.1 we know that the vertex ρ(s) ∈ V (P) lies in ρ0(x). Consequently, every vertex of P231

lies in ρ0(x), i.e., P ⊆ ρ0(x).232

On the other direction, let v be a vertex of P , i.e., ρ(v) ∈ S(P). If v ∈ ρ0(x), then by Lemma 3.1233

x ∈ ρ0(v). Therefore, for every ρ(v) ∈ S(P), we know that x ∈ ρ0(v), i.e., x ∈ ρ0(P).234

The same proof holds for the second statement by replacing all instances of 0 by ∞.235

In the case that 0 ∈ P , ρ∞(P) is empty and the second conclusion of the previous lemma holds236

trivially. Thus, even though the previous result is always true, it is non-trivial only when 0 /∈ P .237

Lemma 3.4. Let P be a polyhedron in Rd. If x ∈ P , then ρ0(P) ⊆ ρ0(x) while ρ∞(P) ⊆ ρ∞(x).238

Proof. Assume for a contradiction that there is a point y ∈ ρ0(P) such that y /∈ ρ0(x). Therefore,239

by Lemma 3.1 we know that x /∈ ρ0(y). Moreover, because y ∈ ρ0(P), Lemma 3.3 implies that240

P ⊆ ρ0(y)—a contradiction with the fact that x ∈ P and x /∈ ρ0(y). An analogous proof holds to241

show that ρ∞(P) ⊆ ρ∞(x).242

Note that the converse of Lemma 3.4 is not necessarily true.243

Lemma 3.5. Let P be a polyhedron in Rd and let γ be a hyperplane. If γ is either tangent to244

ρ0(P) or to ρ∞(P), then ρ(γ) is a point lying on the boundary of P .245

Proof. Let γ be a hyperplane tangent to ρ0(P) at a vertex v. Because v ∈ γ, Lemma 3.1 implies246

that ρ(γ) ∈ ρ(v). We claim that ρ(γ) ∈ P . Assume for a contradiction that ρ(γ) /∈ P . Since247

v ∈ ρ0(P), we know that P ⊆ ρ0(v) by Lemma 3.3. Therefore, because ρ(γ) ∈ ρ(v) and from248

the assumption that ρ(γ) /∈ P , we can slightly perturb ρ(v) to obtain a hyperplane h such that249

P ⊆ h0 while ρ(γ) lies in the interior of h∞ . Thus, since ρ(γ) ∈ h∞ while ρ(γ) /∈ h , Lemma 3.1250

implies that ρ(h) lies in the interior of γ∞ . Moreover, because P ⊆ h0 we know by Lemma 3.3251

that ρ(h) ∈ ρ0(P). Therefore, there is a point of ρ0(P), say ρ(h), that lies in the interior of γ∞—a252

contradiction with the fact that γ is tangent to ρ0(P). Therefore, ρ(γ) ∈ P . Moreover, because253

ρ(γ) ∈ ρ(v) and from the fact that P ⊆ ρ0(v), ρ(γ) cannot lie in the interior of P , i.e, ρ(γ) lies on254

the boundary of P . An analogous proof holds for the case when γ is tangent to ρ∞(P).255

6

x

ρ0(Q)
Q

0

ρ(x)

ρ∞(P)

P

Figure 3: The statement of Theorem 3.7 where a point x lies in the intersection of P and ρ0(Q) if and only
if ρ(x) separates Q from ρ∞(P).

Lemma 3.6. Let P and Q be two polyhedra. If P ⊆ Q, then ρ0(Q) ⊆ ρ0(P) and ρ∞(Q) ⊆ ρ∞(P).256

Proof. Let x ∈ ρ0(Q). Then, Lemma 3.3 implies that Q ⊆ ρ0(x). Because we assumed that P ⊆ Q,257

P ⊆ ρ0(x). Therefore, we infer from Lemma 3.3 that x ∈ ρ0(P). That is, ρ0(Q) ⊆ ρ0(P). An258

analogous proof holds to show that ρ∞(Q) ⊆ ρ∞(P).259

A hyperplane π separates two geometric objects in Rd if they are contained in opposite halfs-260

paces supported by π, note that both objects can contain points lying on π. We obtain the main261

result of this section illustrated in Figure 3.262

Theorem 3.7. Let P and Q be two polyhedra. The polyhedra P and ρ0(Q) intersect if and only if263

there is a hyperplane that separates ρ∞(P) from Q. Also, (1) if x ∈ P ∩ρ0(Q), then ρ(x) separates264

ρ∞(P) from Q, and (2) if γ is a hyperplane that separates ρ∞(P) from Q such that γ is tangent265

to ρ∞(P), then ρ(γ) ∈ P ∩ ρ0(Q). Moreover, the symmetric statements of (1) and (2) hold if we266

replace all instances of P (resp. ∞) by Q (resp. 0) and vice versa.267

Proof. Let x be a point in P ∩ρ0(Q). Because x ∈ P , by Lemma 3.4 we know that ρ∞(P) ⊆ ρ∞(x).268

Moreover, since x ∈ ρ0(Q), by Lemma 3.3, Q ⊆ ρ0(x). Therefore, ρ(x) is a hyperplane that269

separates ρ∞(P) from Q.270

In the other direction, let γ′ be a hyperplane that separates ρ∞(P) from Q. Then, there is271

a hyperplane γ parallel to γ′ that separates ρ∞(P) from Q such that γ is tangent to ρ∞(P).272

Therefore, ρ(γ) is a point on the boundary of P by Lemma 3.5. Because ρ(γ) ∈ P , Lemma 3.4273

implies that ρ0(P) ⊆ γ0 while ρ∞(P) ⊆ γ∞ . Because γ separates ρ∞(P) from Q and from the fact274

that ρ∞(P) ⊆ γ∞ , we conclude that Q ⊆ γ0 . Consequently, by Lemma 3.3 ρ(γ) ∈ ρ0(Q). That275

is, ρ(γ) is a point in the intersection of P and ρ0(Q). The symmetric statements have analogous276

proofs.277

Notice that if 0 ∈ P , then P and ρ0(Q) trivially intersect. Moreover, ρ∞(P) = ∅ implying that278

every hyperplane trivially separates ρ∞(P) from Q. Therefore, while being always true, this result279

is non-trivial only when 0 /∈ P .280

4 Polyhedra in 3D space281

In this section, we focus on polyhedra in R3. Therefore, we can consider the 1-skeleton of a282

polyhedron being the planar graph connecting its vertices through the edges of the polyhedron.283

Given a polyhedron P , a sequence P1, P2, . . . , Pk is a DK-hierarchy of P if the following prop-284

erties hold [8].285

A1. P1 = P and Pk a tetrahedron.286

A2. Pi+1 ⊆ Pi, for 1 ≤ i ≤ k.287

7

A3. V (Pi+1) ⊆ V (Pi), for 1 ≤ i ≤ k.288

A4. The vertices of V (Pi) \ V (Pi+1) form an independent set in Pi, for 1 ≤ i < k.289

A5. The height of the hierarchy k = O(log n),
∑k

i=1 V (Pi) = O(n).290

Given a polyhedron P on n vertices, a set I ⊆ V (P) is a P -independent set if (1) |I| ≥ n/10, (2)291

I forms an independent set in the 1-skeleton of P and (3) the degree of every vertex in I is O(1).292

Dobkin and Kirkpatrick [8] showed how to construct a DK-hierarchy. This construction was293

later improved by Biedl and Wilkinson [1]. Formally, they start by defining P1 = P . Then, given294

a polyhedron Pi, they show how to compute a Pi-independent set I and define Pi+1 as the convex295

hull of the set V (Pi) \ I.296

Using this data structure, they claimed to have an algorithm that computes the distance be-297

tween two preprocessed polyhedra in O(log2 n) time [6]. Unfortunately as we show below, a slight298

oversight in their paper could cause a straightforward implementation of their algorithm to be299

much slower than this claimed bound.300

In our algorithm, as well as in the algorithm presented by Dobkin and Kirpatrick [6], we are301

given a plane tangent to Pi at a vertex v and want to find a vertex of Pi−1 lying on the other side302

of this plane (if it exists). Although they showed that at most one vertex of Pi−1 can lie on the303

other side of this plane and that it has to be adjacent to v, they do not explain how to find such a304

vertex. An exhaustive walk through the neighbors of v in Pi−1 would only be fast enough for their305

algorithm if v is always of constant degree. Unfortunately this is not always the case as shown in306

the following example.307

Start with a tetrahedron Pk and select a vertex q of Pk. To construct the polyhedron Pi−1 from308

Pi, we refine it by adding a vertex slightly above each face adjacent to q. In this way, the degree309

of the new vertices is exactly three. After k steps, we reach a polyhedron P1 = P . In this way, the310

sequence P = P1, P2, . . . , Pk defines a DK-hierarchy of P . Moreover, when going from Pi to Pi−1,311

a new neighbor of q is added for each of its adjacent faces in Pi. Thus, the degree of q doubles312

when going from Pi to Pi−1 and hence, the degree of q in P1 is linear. Note that this situation can313

occur at a deeper level of the hierarchy, even if every vertex of P has degree three.314

This issue seems to have been overlooked in the paper [6]. A naive implementation of their315

algorithm could then cause a query to take Ω(n) time instead of the O(log2 n) bound claimed. We316

solve this problem by bounding the degree of each vertex in every polyhedron of the DK-hierarchy.317

Bounded hierarchies318

Let c be a fixed constant. We say that a polyhedron is c-bounded if at most c faces of this319

polyhedron can meet at a vertex, i.e., the degree of each vertex in its 1-skeleton is bounded by c.320

Given a polyhedron P with n vertices, we describe a method to modify the structure of Dobkin321

and Kirkpatrick to construct a DK-hierarchy where every polyhedron other than P is c-bounded.322

As a starting point, we can assume that the faces of P are in general position (i.e., no four planes323

of S(P) go through a single point) by using Simulation of Simplicity [11]. This implies that324

every vertex of P has degree three. To avoid having vertices of large degree in the hierarchy, we325

introduce the following operation. Given a vertex v ∈ V (P) of degree k > 3, consider a plane π326

that separates v from every other vertex of P . Let e1, e2, . . . , ek be the edges of P incident to v.327

For each 1 ≤ i ≤ k, let vi be the intersections of ei with π. Split the edge ei at vi to obtain a new328

polyhedron with k more vertices and k new edges; for an illustration see Figure 4 (a) and (b).329

To construct a c-bounded DK-hierarchy (or simply BDK-hierarchy), we start by letting P1 = P .330

Given a polyhedron Pi in this BDK-hierarchy, let I be a Pi-independent set. Compute the convex331

hull of V (Pi) \ I, two cases arise: Case 1. If ch(V (Pi) \ I) has no vertex of degree larger than c,332

then let Pi+1 = ch(V (Pi) \ I). Case 2. Otherwise, let W be the set of vertices of Pi with degree333

larger than c. For each vertex of W , split its adjacent edges as described above and let Pi+1 be334

the obtained polyhedron. Notice that Pi+1 is a polyhedron with the same number of faces than Pi.335

Moreover, because each edge of Pi may be split for each of its endpoints, Pi+1 has at most three336

8

π
v va) b) c)

Pi Pi+1
Pi+2

Figure 4: A polyhedron P and a vertex v of large degree. A plane π that separates v from V (P) \ {v} is
used to split the edges adjacent to v. New vertices are added to split these edges. Finally, the removal of v
from the polyhedron leaves every one of its neighbors with degree three while adding a new face.

times the number the edges of Pi. Therefore |V (Pi+1)| ≤ (2/3)|E(Pi+1) ≤ 2|E(Pi)| ≤ 6|V (Pi)| by337

Euler’s formula.338

Because each vertex of W is adjacent only to new vertices added during the split of its adjacent339

edges, the vertices in W form an independent set in the 1-skeleton of Pi+1. In this case, we let340

Pi+2 be the convex hull of V (Pi+1) \W . Therefore, (1) every vertex of Pi+2 has degree three, and341

(2) the vertices in V (Pi+1) \ V (Pi+2) form an independent set in Pi+1; see Figure 4(c). Note that342

Pi+1 and Pi+2 have new vertices added during the splits. However, we know that |V (Pi+2)| ≤343

|V (Pi+1)| ≤ 6|V (Pi)|. Furthermore, we also know that Pi+2 ⊆ Pi+1 ⊆ Pi.344

We claim that by choosing c carefully, we can guarantee that the depth of the BDK-hierarchy is345

O(log n). To prove this claim, notice that after a pruning step, the degree of a vertex can increase346

at most by the total degree of its neighbors that have been eliminated. Let v be a vertex with the347

largest degree in Pi. Note that its neighbors can also have at most degree δ(v), where δ(v) denotes348

the number of neighbors of v in Pi. Therefore, after removing a Pi-independent set, the degree of349

v can be at most δ(v)2 in Pi+1. That is, the maximum degree of Pi can be at most squared when350

going from Pi to Pi+1.351

Therefore, if we assume Case 2 has just been applied and that every vertex vertex of Pi has352

degree three, then after r rounds of Case 1, the maximum degree of any vertex is at most 32r .353

Therefore, the degree of any of its vertices can go above c only after log2(log3 c) rounds, i.e., we go354

through Case 1 at least log2(log3 c) times before running into Case 2.355

Since we removed at least 1/10-th of the vertices after each iteration of Case 1 [1], after356

log2(log3 c) rounds the size of the current polyhedron is at most (9/10)log2(log3 c)|Pi|. At this point,357

we run into Case 2 and add extra vertices to the polyhedron. However, by choosing c sufficiently358

large, we guarantee that the number of remaining vertices is at most 6 · (9/10)log2(log3 c)|Pi| < α|Pi|359

for some constant 0 < α < 1. That is, after log2(log3 c) rounds the size of the polyhedron decreases360

by constant factor implying a logarithmic depth. We obtain the following result.361

Lemma 4.1. Given a polyhedron P , the previous algorithm constructs a BDK-hierarchy P1, P2, . . . , Pk362

with following properties.363

B1. P1 = P and Pk is a tetrahedron.364

B2. Pi+1 ⊆ Pi, for 1 ≤ i ≤ k.365

B3. The polyhedron Pi is c-bounded, for 1 ≤ i ≤ k.366

B4. The vertices of V (Pi) \ V (Pi+1) form an independent set in Pi, for 1 ≤ i < k.367

B5. The height of the hierarchy k = O(log n),
∑k

i=1 V (Pi) = O(n).368

By bounding the degree of each vertex on every vertex of the BDK-hierarchy by a constant,369

we offer a solution to the issue in the algorithm presented in [6].370

The following property of a DK-hierarchy of P was proved in [6] and is easily extended to371

BDK-hierarchies because its proof does not use property A3. Note that all properties of DK and372

BDK hierarchies are identical except for B3 6= A3.373

9

Lemma 4.2. Let P1, . . . , Pk be a BDK-hierarchy of a polyhedron P and let H be a plane defining374

two halfspaces H+ and H−. For any 1 ≤ i ≤ k such that Pi+1 is contained in H+, either Pi ⊆ H+
375

or there exists a unique vertex v ∈ V (Pi) such that v ∈ H− \H.376

5 Detecting intersections in 3D377

In this section, we show how to independently preprocess polyhedra in 3D-space so that their378

intersection can be tested in logarithmic time.379

Preprocessing380

Let P be a polyhedron in R3. Assume without loss of generality that the origin lies in the interior381

of P . Otherwise, modify the coordinate system. To preprocess P , we first compute the polyhedron382

ρ0(P) being the polarization of P . Then, we independently compute two BDK-hierarchies as383

described in Section 4, one for P and one for ρ0(P). Recall that in the construction of BDK-384

hierarchies, we assume that the faces of the polyhedra being processed are in general position385

using Simulation of Simplicity [11]. Assuming that both P and ρ0(P) have vertices in general386

position at the same time is not possible. However, this is not a problem as only one of the387

two BDK-hierarchies will ever be used in a single query. Therefore, we can independently use388

Simulation of Simplicity [11] on each of them.389

Preliminaries of the algorithm390

Let P and R be two independently preprocessed polyhedra with combinatorial complexities n and391

m, respectively. Throughout this algorithm, we fix the coordinate system used in the preprocessing392

of R, i.e., 0 ∈ R. For ease of notation, let Q = ρ0(R). Because 0 ∈ R, Lemma 3.2 implies that393

R = ρ0(Q).394

The algorithm described in this section tests if P and R = ρ0(Q) intersect. Therefore, we can395

assume that P and ρ0(Q) lie in a primal space while ρ∞(P) and Q lie in a polar space. That396

is, we look at the primal and polar spaces independently and switch between them whenever397

necessary. To test the intersection of P and ρ0(Q) in the primal space, we use the BDK-hierarchies398

of P and Q stored in the preprocessing step. In an intersection query, we are given arbitrary399

translations and rotations for P and ρ0(Q) and we want to decide if they intersect. Note that this400

is equivalent to answering the query when only a translation and rotation of P is given and ρ0(Q)401

remains unchanged. This is important as we fixed the position of the origin inside R = ρ0(Q).402

The idea of the algorithm is to proceed by rounds and in each of them, move down in one of the403

two hierarchies while maintaining some invariants. In the end, when reaching the bottom of the404

hierarchy, we determine if P and ρ0(Q) are separated or not.405

Let k and l be the depths of the hierarchies of P and Q, respectively. We use indices 1 ≤ i ≤ k406

and 1 ≤ j ≤ l to indicate our position in the hierarchies of P and Q. The idea is to decrement at407

least one of them in each round of the algorithm.408

To maintain constant time operations, instead of considering a full polyhedron Pi in the BDK-409

hierarchy of P , we consider constant complexity polyhedra P ∗i ⊆ Pi and Q∗j ⊆ Qj . Intuitively,410

both P ∗i and Q∗j are constant size polyhedra that respectively represent the portions of Pi and Qj411

that need to be considered to test for an intersection.412

We also maintain a special point p∗ in the primal space which is a vertex of both P ∗i and Pi,413

and a plane ϕ whose properties will be determined later. In the polar space, we keep a point q∗414

being a vertex of both Q∗j and Qj and a plane γ.415

For ease of notation, given a polyhedron T and a vertex v ∈ V (T), let T \ v denote the convex416

hull of V (T) \ {v}. The star invariant consists of two parts, one in the primal and another in the417

polar space. In the primal space, this invariant states that if i < k, then (1) the plane ϕ separates418

Pi \ p∗ from ρ0(Qj) and (2) ρ(ϕ) ∈ Qj . In the polar space, the star invariant states if j < l, then419

10

(1) the plane γ separates Qj \ q∗ from ρ∞(Pi) and (2) ρ(γ) ∈ Pi. Whenever the star invariant is420

established, we store references to ϕ and γ, and to the vertices p∗ and q∗.421

Other invariants are also considered throughout the algorithm. The separation invariant states422

that we have a plane π that separates Pi from ρ0(Q
∗
j) such that π is tangent to Pi at one of its423

vertices. The inverse separation invariant states that there is a plane µ that separates ρ∞(P ∗i)424

from Qj such that µ is tangent to Qj at one of its vertices.425

Before stepping into the algorithm, we need a couple of definitions. Given a polyhedron T and426

a vertex v ∈ V (T), let Nv(T) be a polyhedron defined as the convex hull of v and its neighbors427

in T . Let κv(T) be the convex hull of the set of rays apexed at v shooting from v to each of its428

neighbors in T . That is, κv(T) is a convex cone with apex v that contains T and has complexity429

O(δ(v)), where δ(v) denotes the number of neighbors of v in T . We say that κv(T) separates T430

from another polyhedra if the latter does not intersect the interior of κv(T).431

The algorithm432

To begin the algorithm, let i = k and j = l, i.e., we start with P ∗i = Pi and Q∗j = Qj being both433

tetrahedra. Notice that for the base case, i = k and j = l, we can determine in O(1) time if434

Pi and ρ0(Qj) = ρ0(Q
∗
j) intersect. If they do not, then we can compute a plane separating them435

and establish the separation invariant. Otherwise, if Pi and ρ0(Qj) intersect, then by Theorem 3.7436

we know that ρ∞(Pi) = ρ∞(P ∗i) do not intersect Qj . Thus, in constant time we can compute a437

plane tangent to Qj in the polar space that separates ρ∞(Pi) = ρ∞(P ∗i) from Qj . That is, we438

can establish the inverse separation invariant. Thus, at the beginning of the algorithm the star439

invariant holds trivially, and either the separation invariant or the inverse separation invariant440

holds (maybe both if Pi and ρ0(Qj) are tangent).441

After each round of the algorithm, we advance in at least one of the hierarchies of P and Q442

while maintaining the star invariant. Moreover, we maintain at least one among the separation443

and the inverse separation invariants. Depending on which invariant is maintained, we step into444

the primal or the polar space as follows (if both invariants hold, we choose arbitrarily).445

A walk in the primal space.446

We step into this case if the separation invariant holds. That is, Pi is separated from ρ0(Q
∗
j) by a447

plane π tangent to Pi at a vertex v.448

We know by Lemma 4.2 that there is at most one vertex p in Pi−1 that lies in π0 \π. Moreover,449

this vertex must be a neighbor of v in Pi−1. Because Pi−1 is c-bounded, we scan the O(1) neighbors450

of v and test if any of them lies in π0 \ π. Two cases arise:451

Case 1. If Pi−1 is contained in π∞ , then π still separates Pi−1 from ρ0(Q
∗
j) while being tangent452

to the same vertex v of Pi−1. Therefore, we have moved down one level in the hierarchy of P while453

maintaining the separation invariant.454

To maintain the star invariant, let P ∗i−1 = Nv(Pi−1) and let p∗ = v ∈ V (P ∗i−1) ∩ V (Pi−1).455

Because Pi−1 is c-bounded, we know that P ∗i−1 has constant size. Since ρ0(Q
∗
j) has constant456

size, we can compute the plane ϕ parallel to π and tangent to ρ0(Q
∗
j) in O(1) time, i.e., ϕ also457

separates Pi−1 from ρ0(Q
∗
j). Because ρ0(Q

∗
j) ⊇ ρ0(Qj) by Lemma 3.6 and from the fact that458

Pi−1 \ p∗ ⊂ Pi−1, we conclude that (1) ϕ separates Pi−1 \ p∗ from ρ0(Qj). Moreover, because459

ρ(ϕ) ∈ Q∗j by Lemma 3.5 and from the fact that Q∗j ⊆ Qj , we conclude that (2) ρ(ϕ) ∈ Qj . Thus,460

the star invariant is maintained in the primal space.461

In the polar space, if j < l, then since ρ∞(Pi−1) ⊆ ρ∞(Pi) by Lemma 3.6, (1) the plane γ that462

separates Qj \ q∗ from ρ∞(Pi) also separates Qj \ q∗ from ρ∞(Pi−1). Moreover, because Pi ⊆ Pi−1463

and from the fact that ρ(γ) ∈ Pi, we conclude that (2) ρ(γ) ∈ Pi−1. Thus, the star invariant464

is also maintained in the polar space and we proceed with a new round of the algorithm in the465

primal space.466

11

Case 2. If Pi−1 crosses π, then by Lemma 4.2 there is a unique vertex p of Pi−1 that lies467

in π0 \ π. To maintain the star invariant, let P ∗i−1 = Np(Pi−1) and let p∗ = p. Then, proceed as468

in to the first case. In this way, we maintain the star invariant in both the primal and the polar469

space.470

Recall that κp∗(Pi−1) is the cone being the convex hull of the set of rays shooting from p∗ to471

each of its neighbors in Pi−1. Since Pi−1 is c-bounded, p∗ has at most c neighbors in Pi−1. Thus,472

both κp∗(Pi−1) and ρ0(Q
∗
j) have constant complexity and we can test if they intersect in constant473

time. Two cases arise:474

Case 2.1. If κp∗(Pi−1) and ρ0(Q
∗
j) do not intersect, then as Pi−1 ⊆ κp∗(Pi−1), we can compute475

in constant time a plane π′ tangent to κp∗(Pi−1) at p∗ that separates Pi−1 ⊆ κp∗(Pi−1) from ρ0(Q
∗
j).476

That is, we reestablish the separation invariant and proceed with a new round in the primal space.477

Case 2.2. Otherwise, if κp∗(Pi−1) and ρ0(Q
∗
j) intersect, then because Pi−1 \ p∗ ⊆ π∞ and478

ρ0(Q
∗
j) ⊆ π0 , we know that this intersection happens at a point of P ∗i−1, i.e., P ∗i−1 intersects ρ0(Q

∗
j).479

Therefore, by Theorem 3.7 there is a plane µ′ that separates ρ∞(P ∗i−1) from Q∗j in the polar space.480

In this case, we would like to establish the inverse separation invariant which states that ρ∞(P ∗i−1)481

is separated from Qj . Note that if j = l, then Qj = Q∗j and the inverse separation invariant is482

established. Therefore, assume that j < l and recall that q∗ ∈ V (Q∗j) ∩ V (Qj).483

By the star invariant and from the assumption that j < l, the plane γ separates Qj \ q∗ from484

ρ∞(Pi−1), i.e., Qj \ q∗ ⊆ γ0 . In this case, we refine P ∗i−1 by adding the vertex ρ(γ) to it, i.e., we let485

P ∗i−1 = ch(Np(Pi−1) ∪ {ρ(γ)}). Note that this refinement preserves the star invariant as p∗ is still486

a vertex of the refined P ∗i−1. Moreover, because ρ(γ) ∈ Pi−1 by the star invariant, we know that487

P ∗i−1 ⊆ Pi−1.488

Because ρ(γ) ∈ P ∗i−1, Lemma 3.4 implies that ρ∞(P ∗i−1) ⊆ γ∞ . Since Qj \ q∗ ⊆ γ0 , γ separates489

ρ∞(P ∗i−1) from Qj \ q∗. Because µ′ separates ρ∞(P ∗i−1) from Q∗j ⊇ Nq∗(Qj), we conclude that there490

is a plane that separates ρ∞(P ∗i−1) from Qj and it only remains to compute it in O(1) time.491

In fact, because Qj \q∗ ⊆ γ0 , all neighbors of q∗ in Qj lie in γ0 and hence, the cone κq∗(Qj) does492

not intersect ρ∞(P ∗i−1). Since κq∗(Qj) and ρ∞(P ∗i−1) have constant complexity, we can compute493

a plane µ tangent to κq∗(Qj) at q∗ such that µ separates κq∗(Qj) from ρ∞(P ∗i−1). Because Qj ⊆494

κq∗(Qj), µ separates Qj from ρ∞(P ∗i−1) while being tangent to Qj at q∗. That is, we establish the495

inverse separation invariant. In this case, we step into the polar space and try to move down in496

the hierarchy of Q in the next round of the algorithm.497

A walk in the polar space.498

We step into this case if the inverse separation invariant holds. That is, we have a plane tangent499

to Qj at one of its vertices that separates ρ∞(P ∗i) from Qj . In this case, we perform an analogous500

procedure to that described for the case when the separation invariant holds. However, all instances501

of Pi (resp. P) are replaced by Qj (resp. Q) and vice versa, and all instances of ρ∞(∗) are replaced502

by ρ0(∗) and vice versa. Moreover, all instances of the separation and the inverse separation503

invariant are also swapped. At the end of this procedure, we decrease the value of j and establish504

either the separation or the inverse separation invariant. Moreover, the star invariant is also505

preserved should there be a subsequent round of the algorithm.506

Analysis of the algorithm507

After going back and forth between the primal and the polar space, we reach the bottom of the508

hierarchy of either P or Q. Thus, we might reach a situation in which we analyze P1 and ρ0(Q
∗
j) in509

the primal space for some 1 ≤ j ≤ l. In this case, if the separation invariant holds, then we have510

computed a plane π that separates P1 from ρ0(Q
∗
j) ⊇ ρ0(Q). Because P = P1, we conclude that π511

separates P from R = ρ0(Q).512

We may also reach a situation in which we test Q1 and ρ∞(P ∗i) in the polar space for some513

1 ≤ i ≤ k. In this case, if the inverse separation invariant holds, then we have a plane µ that514

12

separates Q1 from ρ∞(P ∗i). Since ρ∞(P ∗i) has constant complexity, we can assume that µ is515

tangent to ρ∞(P ∗i) as we can compute a plane parallel to µ with this property. Because Q = Q1,516

we conclude that µ is a plane that separates Q from ρ∞(P ∗i) such that µ is tangent to ρ∞(P ∗i).517

Therefore, Theorem 3.7 implies that ρ(µ) is a point in the intersection of P ∗i ⊆ P and ρ0(Q), i.e.,518

P and R = ρ0(Q) intersect.519

In any other situation the algorithm can continue until one of the two previously mentioned520

cases arises and the algorithm finishes. Because we advance in each round in either the BDK-521

hierarchy of P or the BDK-hierarchy of Q, after O(log n + logm) rounds the algorithm finishes.522

Because each round is performed in O(1) time, we obtain the following result.523

Theorem 5.1. Let P and R be two independently preprocessed polyhedra in R3 with combinatorial524

complexities n and m, respectively. For any given translations and rotations of P and R, we can525

determine if P and R intersect in O(log n+ logm) time.526

6 Detecting intersections in higher dimensions527

In this section, we extend our algorithm to any constant dimension d at the expense of increasing528

the space to O(nbd/2c+δ) for any δ > 0. To do that, we replace the BDK-hierarchy and introduce a529

new hierarchy produced by recursively taking ε-nets of the faces of the polyhedron. Our objective530

is to obtain a new hierarchy with logarithmic depth with properties similar to those described in531

Lemma 4.2. For the latter, we use the following definition.532

Given a polyhedron P , the intersection of (d+1) halfspaces is a shell-simplex of P if it contains533

P and each of these (d+ 1) halfspaces is supported by a (d− 1)-dimensional face of P .534

Lemma 6.1. Let P be a polyhedron in Rd with k vertices. We can compute a set Σ(P) of at most535

O(kbd/2c) shell-simplices of P such that given a hyperplane π tangent to P , there is a shell-simplex536

σ ∈ Σ(P) such that π is also tangent to σ.537

Proof. Without loss of generality assume that 0 ∈ P . Note that ρ0(P) has exactly k (d − 1)-538

dimensional faces. Using Lemma 3.8 of [5] we infer that there exists a triangulation T of ρ0(P)539

such that the combinatorial complexity of T is O(kbd/2c). That is, T decomposes ρ0(P) into interior540

disjoint d-dimensional simplices.541

Let s be a simplex of T . For each v ∈ V (s), notice that since v ∈ ρ0(P), P ⊆ ρ0(v) by542

Lemma 3.4. Therefore, P ⊆ ∩v∈V (s)ρ0(v) = ρ0(s), i.e., σs = ρ0(s) is a shell-simplex of P obtained543

from polarizing s. Finally, let Σ(P) = {σs : s ∈ T} and notice that |Σ(P)| = O(kbd/2c).544

Because 0 ∈ P , Lemma 3.2 implies that P = ρ0(ρ0(P)). Let π be a hyperplane tangent545

to P = ρ0(ρ0(P)) and note that its polar is a point ρ(π) lying on the boundary of ρ0(P) by546

Lemma 3.5. Hence, ρ(π) lies on the boundary of a simplex s of T . Thus, by Lemma 3.4 we know547

that σs ⊆ π0 . Because ρ(π) lies on the boundary of s, π is tangent to σs yielding our result.548

Hierarchical trees549

Let P be a polyhedron with combinatorial complexity n. We can assume that the vertices of P550

are in general position (i.e., no d + 1 vertices lie on the same hyperplane) using Simulation of551

Simplicity [11].552

Let F (P) be the set of all faces of P . Consider the family G such that a set g ∈ G is the553

complement of the intersection of d+ 1 halfspaces. Let Fg = {f ∈ F (P) : f ∩ g 6= ∅} be the set of554

faces of P induced by g. Let GF (P) = {Fg : g ∈ G} be the family of subsets of F (P) induced by G.555

To compute the hierarchy of P , let 0 < ε < 1 and consider the range space defined by F (P)556

and GF (P). Since the VC-dimension of this range space is finite, we can compute an ε-net N of557

(F (P), GF (P)) of size O(1
ε log 1

ε) = O(1) [18]. Because the vertices of P are in general position,558

each face of P has at most d + 1 vertices. Therefore, ch(N) has O(|N |) vertices, i.e., ch(N) has559

constant complexity. By Lemma 6.1 and since |N | = O(1), we can compute the set Σ(ch(N))560

having O(|N |bd/2c) shell-simplices of ch(N) in constant time.561

13

Given a shell-simplex σ ∈ Σ(ch(N)), let σ̄ ∈ G be the complement of σ. Because ch(N) ⊆ σ,562

σ̄ intersects no face of N . Recall that Fσ̄ = {f ∈ F (P) : f ∩ σ̄ 6= ∅}. Therefore, since N is an ε-net563

of (F (P), GF (P)), we conclude that Fσ̄ contains at most ε|F (P)| faces of P .564

We construct the hierarchical tree of a polyhedron P recursively. In each recursive step, we565

consider a subset F of the faces of P as input. As a starting point, let F = F (P). The recursive566

construction considers two cases: (1) If F consists of a constant number of faces, then its tree567

consists of a unique node storing a reference to ch(F). (2) Otherwise, compute the ε-net N of568

F as described above and store ch(N) together with Σ(ch(N)) at the root node. Then, for each569

shell-simplex σ ∈ Σ(ch(N)) construct recursively the tree for Fσ̄ and attach it to the root node.570

Because the size of the ε-net is independent of the size of the polyhedron, we obtain a hierarchical571

structure being a tree rooted at ch(N) with maximum degree O(|N |bd/2c).572

Lemma 6.2. Given a polyhedron P in Rd with combinatorial complexity n and any δ > 0, we can573

compute a hierarchical tree for P with O(log n) depth in O(nbd/2c+δ) time using O(nbd/2c+δ) space.574

Proof. Because we reduce the number of faces of the original polyhedron by a factor of ε on each575

branching of the hierarchical tree, the depth of this tree is O(log n).576

The space S(n) of this hierarchical tree of P can be described by the following recurrence577

S(n) = O(|N |bd/2c)S(εn) + O(1). Recall that |N | = O(1
ε log 1

ε). Moreover, if we let r = 1/ε, we578

can solve this recurrence using the master theorem and obtain that S(n) = O(n
bd/2c log(Cr log r)

log r)579

for some constant C > 0. Therefore, by choosing r = 1/ε sufficiently large, we obtain that the580

total space is S(n) = O(nbd/2c+δ) for any δ > 0 arbitrarily small. To analyze the time needed581

to construct this hierarchical tree, recall that an ε-net can be computed in linear time [18] which582

leads to the following recurrence T (n) = O(|N |bd/2c)S(εn) + O(n). Using the same arguments as583

with the space we solve this recurrence and obtain that the total time is T (n) = O(nbd/2c+δ) for584

any δ > 0 arbitrarily small.585

Testing intersection in higher dimensions586

Using hierarchical trees, we extend the ideas used for the 3D-algorithm presented in Section 5 to587

higher dimensions. We start by describing the preprocessing of a polyhedron.588

Preprocessing589

Let P be a polyhedron Rd with combinatorial complexity n. Assume without loss of generality590

that the origin lies in the interior of P . Otherwise, modify the coordinate system. To preprocess591

P , we first compute the polyhedron ρ0(P) being the polarization of P . Then, we compute two592

hierarchical trees as described in the previous section, one for P and another for ρ0(P). Similarly to593

the 3D case, because only one of the two hierarchical trees will ever be used in a single intersection594

query, we can independently use Simulation of Simplicity [11] in the construction of each of the595

trees. Because |F (ρ0(P))| = |F (P)| = n by Corollary 2.14 of [23], the total size of these hierarchical596

trees is O(nbd/2c+δ).597

Preliminaries of the algorithm598

Let P and R be two independently preprocessed polyhedra in Rd with combinatorial complexity599

n and m, respectively. Throughout this algorithm, we fix the coordinate system used in the600

preprocessing of R, i.e., we assume that 0 ∈ R. For ease of notation, let Q = ρ0(R). Because601

0 ∈ R, Lemma 3.2 implies that R = ρ0(Q). Assume that P and ρ0(Q) lie in a primal space while602

ρ∞(P) and Q lie in a polar space. As in the 3D-algorithm, we look at the primal and polar spaces603

independently and switch between them whenever necessary.604

To test the intersection of P and R = ρ0(Q), we use the hierarchical trees of P and Q computed605

during the preprocessing step. The idea is to walk down these trees using paths going from the606

root to a leaf while maintaining some invariants.607

14

Throughout the algorithm, we prune the faces of P and keep only those that can define an608

intersection. Formally, we consider a set F ∗(P) ⊆ F (P) such that P intersects ρ0(Q) if and only if a609

face of F ∗(P) intersects ρ0(Q). In the same way, we prune F (Q) and maintain a set F ∗(Q) ⊆ F (Q)610

such that Q intersects ρ∞(P) if and only if a face of F ∗(Q) intersects ρ∞(P). If these properties611

hold, we say that the correctness invariant is maintained.612

At the beginning of the algorithm let F ∗(P) = F (P) and F ∗(Q) = F (Q). In each round of the613

algorithm we discard a constant fraction of the vertices of either F ∗(P) or F ∗(Q) while maintaining614

the correctness invariant. Note that these sets are not explicitly maintained.615

Throughout, we consider constant size polyhedra PN ⊆ P and QN ⊆ Q being the convex616

hull of ε-nets of F ∗(P) and F ∗(Q), respectively. The algorithm tests if PN and ρ0(QN) intersect617

to determine either the separation or the inverse separation invariant, both analogous to those618

used by the 3D-algorithm. Formally, the separation invariant states that we have a hyperplane π619

that separates PN from ρ0(QN) such that π is tangent to PN at one of its vertices. The inverse620

separation invariant states that there is a hyperplane µ that separates ρ∞(PN) from QN such that621

µ is tangent to QN at one of its vertices. By Theorem 3.7 at least one of the invariants must hold.622

At the beginning of the algorithm, we let PN ⊆ P and QN ⊆ Q be the convex hulls of the623

ε-nets computed for F (P) and F (Q) at the root of their respective hierarchical trees. Because they624

have constant complexity, we can test if the separation or the inverse separation invariant holds.625

Depending on which invariant is established, we step into the primal or the polar space as follows626

(if both invariants hold, we choose arbitrarily).627

Separation invariant.628

If the separation invariant holds, then we have a hyperplane π tangent to PN at a vertex v such that629

π separates PN from ρ0(QN). Therefore, by Lemma 6.1 there is a simplex σ ∈ Σ(PN) such that630

π is also tangent to σ at v. Because we stored Σ(PN) in the hierarchical tree, we go through the631

O(1) shell-simplices of Σ(PN) to find σ. Recall that Fσ̄ is the set of faces of F ∗(P) that intersect632

the complement of σ. Thus, every face of P intersecting the halfspace π0 belongs to Fσ̄.633

Because π separates PN from ρ0(Q) ⊆ ρ0(QN) ⊆ π0 , the only faces of F ∗(P) that could define634

an intersection with ρ0(Q) are those in Fσ̄, i.e., a face of F ∗(P) intersects ρ0(Q) if and only if a635

face of Fσ̄ intersects ρ0(Q). Because the correctness invariant held prior to this step, we conclude636

that a face of Fσ̄ intersects ρ0(Q) if and only if P intersects ρ0(Q).637

Recall that we have recursively constructed a tree for Fσ̄ which hangs from the node storing PN .638

In particular, in the root of this tree we have stored the convex hull of an ε-net of Fσ̄. Therefore,639

after finding σ in O(1) time, we move down one level to the root of the tree of Fσ̄. Then, we redefine640

PN to be the convex hull of the ε-net of Fσ̄ stored in this node. Moreover, we let F ∗(P) = Fσ̄641

which preserves the correctness invariant. Then, we test if the new PN and ρ0(QN) intersect to642

determine if either the separation or inverse separation invariant holds. In this way, we moved643

down one level in the hierarchical tree of P and proceed with a new round of the algorithm.644

Inverse separation invariant.645

If the inverse separation invariant holds, then we have a hyperplane that separates ρ∞(PN) from646

QN . Applying an analogous procedure to the one described for the separation invariant, we redefine647

QN and move down one level in the hierarchical tree of Q while maintaining the correctness648

invariant. Then, we test if ρ∞(PN) intersects the new QN to determine if either the separation or649

inverse separation invariants holds and proceed with the algorithm.650

After O(log n+logm) rounds, the algorithm reaches the bottom of the hierarchical tree of either651

P or Q. If we reach the bottom of the hierarchical tree of P and the separation invariant holds, then652

because ρ0(QN) ⊇ ρ0(Q) by Lemma 3.6, we have a hyperplane that separates PN = ch(F ∗(P))653

from ρ0(QN). That is, no face of F ∗(P) intersects ρ0(QN). Because P and ρ0(Q) intersect if654

15

and only if a face of F ∗(P) intersects ρ0(Q) by the correctness invariant, we conclude that P and655

R = ρ0(Q) do not intersect.656

Analogously, if we reach the bottom of the hierarchical tree of Q and the inverse separation657

invariant holds, then we have a hyperplane that separatesQN = ch(F ∗(Q)) from ρ∞(PN) ⊇ ρ∞(P).658

That is, no face of F ∗(Q) intersects ρ∞(P). Thus, by the correctness invariant, we conclude that659

Q and ρ∞(P) do not intersect. Therefore, Theorem 3.7 implies that P and R = ρ0(Q) intersect.660

In any other situation the algorithm can continue until one of the two previously mentioned661

cases arises and the algorithm finishes. Recall that the hierarchical trees of P and Q have logarith-662

mic depth by Lemma 6.2. Because in each round we move down in the hierarchical tree of either663

P or Q, after O(log n + logm) rounds the algorithm finishes. Moreover, since each round can be664

performed in O(1) time, we obtain the following result.665

Theorem 6.3. Let P and R be two independently preprocessed polyhedra in Rd with combinatorial666

complexities n and m, respectively. For any given translations and rotations of P and R, we can667

determine if P and R intersect in O(log n+ logm) time.668

Note that this algorithm does not construct a hyperplane that separates P and ρ0(Q) or a669

common point, but only determines if such a separating plane or intersection point exists. In fact,670

if P is disjoint from ρ0(Q), then we can take the O(log n) hyperplanes found by the algorithm,671

each of them separating some portion of P from ρ0(Q). Because all these hyperplanes support a672

halfspace that contains ρ0(Q), their intersection defines a polyhedron S that contains ρ0(Q) and673

excludes P . Therefore, we have a certificate of size O(log n) that guarantees that P and ρ0(Q) are674

separated.675

Similarly, if Q is disjoint from ρ∞(P), then we can find a polyhedron of size O(logm) whose676

boundary separates Q from ρ∞(P). In this case, we have a certificate that guarantees that Q and677

ρ∞(P) are disjoint which by Theorem 3.7 implies that P and ρ0(Q) intersect.678

Acknowledgments.679

We thank David Kirkpatrick for his observations regarding the oversight in [6]. We thank an680

anonymous referee for useful comments in a previous version of this paper.681

References682

[1] T. Biedl and D. F. Wilkinson. Bounded-degree independent sets in planar graphs. Theory of Computing683

Systems, 38(3):253–278, 2005.684

[2] B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM Journal685

on Computing, 21:586–591, 1992.686

[3] B. Chazelle and D. P. Dobkin. Detection is easier than computation (extended abstract). In Proceedings687

of the 12th Annual ACM Symposium on Theory of Computing, pages 146–153, 1980.688

[4] B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions. Journal of689

the ACM, 34(1):1–27, Jan. 1987.690

[5] K. L. Clarkson. A randomized algorithm for closest-point queries. SIAM Journal on Computing,691

17(4):830–847, 1988.692

[6] D. Dobkin and D. Kirkpatrick. Determining the separation of preprocessed polyhedra—a unified ap-693

proach. Automata, Languages and Programming, pages 400–413, 1990.694

[7] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Theoretical Computer695

Science, 27(3):241–253, 1983.696

[8] D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the separation of convex697

polyhedra. Journal of Algorithms, 6(3):381–392, 1985.698

[9] D. P. Dobkin and D. L. Souvaine. Detecting the intersection of convex objects in the plane. Computer699

aided geometric design, 8(3):181–199, 1991.700

16

[10] H. Edelsbrunner. Computing the extreme distances between two convex polygons. Journal of Algo-701

rithms, 6(2):213–224, 1985.702

[11] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degenerate cases703

in geometric algorithms. ACM Transactions on Graphics (TOG), 9(1):66–104, 1990.704

[12] J. Erickson. Space-time tradeoffs for emptiness queries. SIAM Journal on Computing, 29(6):1968–1996,705

2000.706

[13] J. Goodman and J. O’Rourke, editors. Handbook of Discrete and Computational Geometry, Second707

Edition. CRC Press LLC, 2004.708

[14] P. Jiménez, F. Thomas, and C. Torras. 3D collision detection: a survey. Computers & Graphics,709

25(2):269–285, 2001.710

[15] D. Kirkpatrick. Personal communication.711

[16] M. Lin and S. Gottschalk. Collision detection between geometric models: A survey. In Proceedings of712

IMA Conference on Mathematics of Surfaces, volume 1, pages 602–608, 1998.713

[17] J. Matoušek and O. Schwarzkopf. On ray shooting in convex polytopes. Discrete & Computational714

Geometry, 10(1):215–232, 1993.715

[18] J. Matoušek. Construction of epsilon nets. In Proceedings of the 5th Annual Symposium on Computa-716

tional Geometry, pages 1–10, New York, 1989. ACM.717

[19] D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theoretical718

Computer Science, 7(2):217–236, 1978.719

[20] J. O’Rourke, C.-B. Chien, T. Olson, and D. Naddor. A new linear algorithm for intersecting convex720

polygons. Computer Graphics and Image Processing, 19(4):384 – 391, 1982.721

[21] M. I. Shamos. Geometric complexity. In Proceedings of the 7th Annual ACM Symposium on Theory of722

Computing, pages 224–233. ACM, 1975.723

[22] M. I. Shamos and D. Hoey. Geometric intersection problems. In Proceedings of the 17th Annual724

Symposium on Foundations of Computer Science, pages 208–215. IEEE, 1976.725

[23] G. M. Ziegler. Lectures on polytopes, volume 152. Springer, 1995.726

17

	Introduction
	Algorithm in the plane
	The polar transformation
	Polyhedra in 3D space
	Detecting intersections in 3D
	Detecting intersections in higher dimensions

