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Abstract3

We present several algorithms for computing the visibility polygon of a simple polygon4

P of n vertices (out of which r are reflex) from a viewpoint inside P, when P resides in5

read-only memory and only few working variables can be used. The first algorithm uses a6

constant number of variables, and outputs the vertices of the visibility polygon in O(nr̄) time,7

where r̄ denotes the number of reflex vertices of P that are part of the output. Whenever8

we are allowed to use O(s) variables, the running time decreases to O(nr
2s

+ n log2 r) (or9

O(nr
2s

+ n log r) randomized expected time), where s ∈ O(log r). This is the first algorithm in10

which an exponential space-time trade-off for a geometric problem is obtained.11

1 Introduction12

The visibility polygon of a simple polygon P from a viewpoint q is the set of all points of P that13

can be seen from q, where two points p and q can see each other whenever the segment pq is14

contained in P. The visibility polygon is a fundamental concept in computational geometry and15

one of the first problems studied in planar visibility. The first correct and optimal algorithm for16

computing the visibility polygon from a point was found by Joe and Simpson [18]. It computes17

the visibility polygon from a point in linear time and space. We refer the reader to the survey of18

O’Rourke [21] and the book of Gosh [15] for an extensive discussion of such problems.19

In this paper we look for an algorithm that computes the visibility polygon of a given point20

and uses few variables. This kind of algorithm not only provides an interesting trade-off between21

running time and memory needed, but is also useful in portable devices where important hardware22

constraints are present (such as the ones found in digital cameras or mobile phones). In addition,23

this model has direct applications in concurrent environments where several devices with limited24

memory resources perform some computation on a large centralized input. Since several devices25

may access the input at the same time, allowing writing to the input memory can result in26

compromising its integrity.27

A significant amount of research has focused on the design of algorithms that use few variables,28

some of them even dating from the 80s [19]. Although many models exist, most of the research29

considers that the input is in some kind of read-only data structure. In addition to the input30

values, we are allowed to use few additional variables (typically a variable holds a logarithmic31

number of bits).32

One of the most studied problems in this setting is that of selection. For any constant ε ∈ (0, 1),33

Munro and Raman [20] gave an algorithm that runs in O(n1+ε) time and uses O(1/ε) variables.34

Frederickson [14] extended this result to the case in which s working variables are available (and35

s ∈ Ω(log n) ∩ O(2logn/ log
∗ n)). Raman and Ramnath [22] gave several exact and approximation36

∗A preliminary version of this paper appeared in the proceedings of the 22nd International Symposium on
Algorithms and Computation (ISAAC 2011) [8].
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algorithms for the case in which fewer variables are available. Among other results, they provide37

a 2/3-approximation of the median that runs in O(sn1+1/s) time using O(s) variables (for s ∈38

o(log n)), or O(n log n) time, using O(log n) variables. More recently Chan [12] provided several39

lower bounds for performing selection with few variables.40

In recent years there has been a growing interest in finding algorithms for geometric problems41

that use a constant number of variables. An early example is the well-known gift-wrapping algo-42

rithm (also known as Jarvis march [17]), which can be used to report the points on the convex hull43

of a set of n points in O(nh̄) time using a constant number of variables, where h̄ is the number of44

vertices on the convex hull. Recently, Asano and Rote [6] and afterwards Asano et al. [3, 5] gave45

efficient methods for computing well-known geometric structures, such as the Delaunay triangula-46

tion, the Voronoi diagram, a polygon triangulation, and a minimum spanning tree (MST) using a47

constant number of variables. These algorithms run in O(n2) time (except computing the MST,48

which needs O(n3) time). Observe that, since these structures have linear size, they are not stored49

but reported. Prior to this work, there was no algorithm for computing the visibility polygon in50

memory-constrained models. Indeed, this problem was explicitly posed as an open problem by51

Asano et al. [4] for the case in which only a constant number of variables are allowed.52

Results53

In this paper we present a novel approach for computing the visibility polygon of a given point54

inside a simple polygon. It is easy to see that reflex vertices have a much larger influence on the55

visibility polygon than convex vertices. Therefore, whenever possible we express the running time56

of our algorithms not only in terms of n, the complexity of P, but also in terms of r and r̄ (the57

number of reflex vertices of P that are present in the input and in the output, respectively). This58

approach continues a line of research relating the combinatorial and computational properties of59

polygons to the number of their reflex vertices. We refer the reader to [1, 9, 10] and references60

found therein for a deep review of existing similar results.61

In Section 2 we begin the paper with some preliminaries, followed by some observations and62

basic algorithms in Section 3. In Section 4 we give an output-sensitive algorithm that reports the63

vertices of the visibility polygon in O(nr̄) time using O(1) variables. Using this algorithm as a64

stepping stone, in Section 5 we present a divide-and-conquer algorithm. This algorithm runs in65

O(nr2s +n log2 r) time (or O(nr2s +n log r) randomized expected time) using O(s) variables (for any66

s ∈ O(log r)), giving an exponential trade-off between running time and space.67

Remark: prior to this research there was no known method for computing visibility polygons68

using few variables. Following the conference version of this paper [8], De et al. [13] provided a69

linear-time algorithm that uses O(
√
n)-variables. Parallel to this research, Barba et al. [7] gave70

a general method for transforming stack-based algorithms into memory constrained workspaces.71

Since Joe and Simpson’s algorithm for computing the visibility polygon [18] is stack-based, their72

approach can be used for this problem as well.73

2 Preliminaries74

Model definition and considerations on input/output precision75

We use a slight variation of the constant workspace model, introduced by Asano and Rote [6]. In76

this model the input of the problem resides in a read-only data structure and we are allowed to77

perform random access to any of the values of the input in constant time. An algorithm can use78

a constant number of variables and we assume that each variable or pointer contains a data word79

of O(log n) bits. Implicit storage consumption required by recursive calls is also considered part80

of the workspace. This model is also referred as log space [2] in the complexity literature.81

Many other similar models have been studied. We note that in some of them (like the stream-82

ing [16] or the multi-pass model [11]) the values of the input can only be read once or a fixed83

number of times. As in the constant workspace model of Asano and Rote [6], our model allows84

scanning the input as many times as necessary. However, our model differs from theirs in two85
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aspects: we are allowed to use a workspace of O(s) variables (instead of O(1)), and we do not86

require random access to the vertices of the input.87

The input to our problem is a simple polygon P in a read-only data structure and a point88

q in the plane, from where the visibility polygon needs to be computed. We do not make any89

assumptions on whether the input coordinates are rational or real numbers (in some implicit90

form). The only operations that we perform on the input are determining whether a given point91

is above, below or on a given line and determining the intersection point between two lines. In92

both cases, the line is defined as passing through two points of the input, hence both operations93

can be expressed as finding the root of linear equations whose coefficients are values of the input.94

We assume that these two operations can be done in constant time. Moreover, if the coordinates95

of the input are algebraic values, we can express the coordinates of the output as “the intersection96

point of the line passing through points pi and pj and the line passing through pk and pl” (where97

pi, pj , pk and pl are vertices of the input).98

Definitions and basic properties99

We say that a point p is visible from q (with respect to P) if and only if the segment pq is contained100

in P (note that we regard P as a closed subset of the plane). The set of points visible from q is101

called the visibility polygon of P, and is denoted VisP . Note that if q is outside of P then VisP is102

by definition empty. Thus, when considering visibility with respect to polygons, we always assume103

that q is inside the polygon. From now on, we assume that q is fixed, hence we omit the “with104

respect to q” term.105

We assume we are given P as a list of its vertices in counterclockwise order along its boundary106

(denoted by ∂P). Let p0 be a point on ∂P closest to q on the horizontal line passing through107

q. It is easy to see that p0 is visible and can be computed in linear time. In the following, we108

will treat p0 as a vertex of P (even though it does not need to be one). By implicitly reordering109

the vertices of the input, we can assume that we are given the vertices of P in counterclockwise110

direction starting from p0 (i.e., P = (p0, . . . , pn)).111

For simplicity of exposition, we assume that the vertices of P are in a weak general position;112

that is, we assume that there do not exist two vertices p, p′ ∈ P such that p, p′, and q are aligned113

(but we note that the algorithms can be extended easily for the general case).114

Along this paper, we will often work with polygonal chains (instead of polygons). However, we115

will restrict our scope to polygonal chains contained in ∂P. For any two points a, b on ∂P, there116

is a unique path from a to b that travels counterclockwise along ∂P; let C = Chain(a, b) be the117

set of points traversed in this path, including both a and b (this set is called the chain between a118

and b). We say that a and b are the endpoints of C, and we refer to the rest of the points on C as119

its interior points.120

We now extend the concept of visibility to chains. Due to technical reasons, we define this121

concept for chains contained in ∂P whose endpoints are visible from q. We say that a chain C is122

independent if and only if its endpoints are visible points of P. Given a chain C = Chain(a, b)123

with endpoints a and b, let RC denote the polygon enclosed by the union of C and the segments124

qa and qb (equivalently, we use the notation R(a, b)).125

Given a point q ∈ R2 and an independent chain C with endpoints a and b, we say that a point126

p ∈ R2 is visible from q with respect to C if and only if p is visible from q with respect to RC . The127

set of points that are visible with respect to C is called the visibility polygon of C, and is denoted128

VisC . We start by observing that both concepts of visibility are equivalent (hence we need not129

distinguish between them).130

Observation 1. If C = Chain(a, b) is an independent subchain, then RC is a simple polygon.131

Moreover, a point x ∈ C is visible with respect to P if and only if it is visible with respect to C.132

The above observation certifies that visibility within independent chains is well-defined. Since133

we will only consider independent chains, from now on we omit the “with respect to P” (or to C),134

and simply say that a point p is visible.135
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Figure 1: Left: general setting, vertices that are reflex with respect to q are shown with a white
point (black otherwise). Right: the visibility polygon VisP .

True to its name, the visibility polygon of an independent chain C ⊆ ∂P can be computed136

without having knowledge of the remainder of P.137

Observation 2. Let C = Chain(a, b) be an independent chain such that C = (a, pi, . . . , pj , b) for
some 0 < i < j < n. Let x be a visible interior point of C lying on the edge pkpk+1 for some
i ≤ k < j. If we let C1 = {a, pi, . . . , pk, x} and C2 = {x, pk+1, . . . , pj , b}, then

VisC = VisC1(q) ∪VisC2(q),

VisC1(q) ∩VisC2(q) = qx.

Given a point p on the plane, let ρq(p) be the ray emanating from q and passing through p.138

We define θq(p) as the angle that ρq(p) makes with the positive x-axis, 0 ≤ θq(p) < 2π. We call139

θq(p) the CCW-angle of p.140

We also need to define what a reflex vertex is in our context. Given any vertex pk, the line `k141

passing through pk and q splits P \ `k into disjoint components. A vertex pk is reflex with respect142

to q if the angle at the vertex interior to P is more than π and the vertices pk−1 and pk+1 lie on143

the same connected component of R2 \ `k (see Fig. 1). Observe that any vertex that is reflex with144

respect to q is a reflex vertex (in the usual sense), but the converse is not true. Since the point145

q is fixed, from now on we omit the “with respect to q” term and simply refer to these points as146

reflex. Note that being reflex is a local property that can be verified in O(1) time. Intuitively147

speaking, reflex vertices with respect to q are the vertices where important changes occur in the148

visibility polygon. That is, where the polygon boundary can change between visible or not-visible.149

Let r be the number of reflex of vertices of P. We also define r̄ as the number of reflex vertices of150

P that are present in VisP . Naturally, we always have r̄ ≤ r < n.151

Given two points p and p′ on a chain C = Chain(a, b), we say that p lies before p′ (resp. p′ lies152

after p) if, when we walk from a towards b along C, we first pass through p and then through p′. We153

say that a chain is visible if all the points of the chain are visible. A visible chain C = Chain(a, b)154

is CCW-maximal if no other visible chain starting at a strictly contains C. In this case, we say155

that C is the maximal chain starting at a and ending at b.156

Given a visible reflex vertex v on a chain C, we say that a point w 6= v on ∂P is the shadow of157

v if w is collinear with q and v, and w is visible from q (this point is denoted by Shadow(v, C)).158

Due to the general position assumption, w is uniquely defined and must be an interior point of159

an edge. That is, each visible reflex vertex is uniquely associated to a shadow point (and vice160

versa). We say that a visible reflex vertex v is of type R (resp. type L) if its shadow lies after (resp.161

before) v; see Fig. 2 (left). Equivalently, a vertex v is of type R if q, v, x and q, v, y make a right162

turn (where x and y are the predecessor and the successor of v on C, respectively). Analogously,163

vertices of type L make a left turns instead.164

A ray shooting query is a basic operation that, given an independent chain C and a point x ∈ C,165

considers the ray ρq(x) and reports the last visible point in ρq(x) with respect to C (i.e., the one166

furthest away from q). Observe that when x is a visible reflex vertex we obtain its shadow. We167
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b

Figure 2: Left: v is a reflex vertex of type R, while v′ is of type L. The chain between v and Shadow(v, C),
together with the segment joining them, bound a simple polygon containing no visible points other than v
and Shadow(v, C). Observe that the chain C(Shadow(v, C),Shadow(v′, C)) is CCW-maximal. Right: A
polygonal chain C = Chain(a, b) and its associated polygon R(a, b) = RC . Point x is visible while points
y and z are not. Note that every visible point of C lies inside ∆C .

denote the output of this operation by RayShooting(x, C). It is easy to see that a ray shooting168

query can be performed in linear time, using only O(1) extra variables, by scanning the edges of169

C one by one and computing their intersections with ρq(x).170

Finally, for C = Chain(a, b) we define ∆C as the cone with apex q that contains every point in171

the plane with CCW-angle between θq(a) and θq(b); see Fig. 2 (right).172

3 Understanding the visibility polygon173

The basic scheme of our algorithms is to partition the input polygon into independent subchains so174

that the visibility within one subchain is unaffected by the others. We will use ∂P as the starting175

chain, thus the first chain will be closed, but the following chains will be open. Notice that since176

P is simple, any chain of it will be simple too.177

In this section we present some observations about the independence between chains.178

Observation 3. Let v be a visible reflex vertex of P of type R (resp. L) whose shadow is w. The179

Chain(v, w) (resp. Chain(w, v)) contains no visible point other than its endpoints. In particular,180

a visible chain cannot contain an interior reflex vertex.181

The following important lemma characterizes the endpoints of CCW-maximal chains.182

Lemma 1. Let C = Chain(a, b) be an independent chain, let p ∈ C be a visible point and let v183

the first visible reflex vertex encountered when walking from p towards b (or b if none exists). Let184

Chain(p, p′) be the CCW-maximal chain starting at p. The point p′ is either equal to v (if v = b185

or v is of type R), or equal to the shadow of v (if v is of type L).186

Proof. Clearly, all the points lying after p are visible if and only if p′ = b. If p′ 6= b, then, when187

walking on C, p′ is the last visible point of the chain before a change in visibility occurs (i.e. points188

at distance ε > 0 lying after p′ are not visible for sufficiently small values of ε). This can happen189

for only two reasons: either p′ is a reflex vertex of type R, or there is some reflex vertex v′ of type190

L such that p′ is the shadow of v′. In the former case, p′ is equal to v since no reflex vertex lies in191

the interior of Chain(p, p′) by Observation 3. In the latter case, v′ must be the first visible reflex192

vertex lying after p since no point between p′ and v′ can be visible by Observation 3.193

The following result is a direct consequence of Lemma 1 that allows us to report VisC of an194

independent chain C with no interior reflex vertices.195

Corollary 1. Let p ∈ ∂P be a visible point such that p is not a reflex vertex of type R. Let v be196

the first visible reflex vertex lying after p and let w be its shadow. The following statements hold:197
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v
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R(p, v)

b

pv′

Shadow(v′)

Figure 3: When the first reflex vertex v lying after p is not visible, there must exist a visible reflex vertex
in Chain(p, b) angularly located between p and v. The one with smallest CCW-angle inside R(p, v) (v′ in
the figure) will determine the change between visible and non-visible regions between p and v.

- If v is of type R, then Chain(p, v) is CCW-maximal.198

- If v is of type L, then Chain(p, w) is CCW-maximal.199

4 Output Sensitive Algorithm200

In this section we present an algorithm that will be used as stepping stone for our divide and201

conquer algorithm presented in Section 5. This base algorithm computes the visibility polygon of202

an independent chain using O(1) extra variables.203

For this purpose, we introduce an operation that we call NextVisReflex. This operation204

receives an independent chain C = Chain(a, b) and a visible point p on C. Its objective is to205

compute the next visible reflex vertex lying after p on C, along with its shadow. That is, let v be206

the first reflex vertex lying after p on C. If v is visible, then NextVisReflex(p, C) should return207

v and its shadow. Otherwise, we know that at some point when walking along the path from p to208

v we change from a visible to a non-visible region. By Lemma 1, this change occurs at the shadow209

of some visible reflex vertex. In this case, NextVisReflex(p, C) should return this reflex vertex210

(as well as its shadow). For well-definedness purposes, we say that NextVisReflex(p, C) should211

return b if C contains no reflex vertex.212

The following observation (illustrated in Fig. 3) allows us to compute NextVisReflex(p, C)213

efficiently.214

Observation 4. For any independent chain C = Chain(a, b), and visible point p ∈ C that is not215

an R-type reflex vertex, let v be the first reflex vertex encountered when walking from p towards b216

on C (or b if none exists). If v is not visible, then the CCW-maximal chain starting at p ends at217

the shadow of the L-type reflex vertex in R(p, v) with smallest CCW-angle.218

Lemma 2. For any independent chain C of n vertices and a visible point p ∈ C,219

NextVisReflex(p, C) can be computed in O(n) time using O(1) additional variables.220

Proof. Let C = Chain(a, b) and let v be the first reflex vertex lying after p on C. In O(n) time221

we can perform a ray shooting query: if v is visible then we output it (and its shadow) as the222

result of NextVisReflex(p, C). Otherwise, we use Observation 4 and compute the reflex vertex223

on Chain(p, b) with smallest CCW-angle (among those that are in R(p, v)). This vertex is found224

by walking along Chain(p, b) and keeping track of every time we enter or leave R(p, v). Note that225

since p is visible and C is simple, we can only enter or leave R(p, v) when we cross line segment qv,226

hence this can be checked in constant time per edge of C. Since a constant number of operations227

is needed per vertex, at most O(n) time will be needed for computing NextVisReflex(p, C).228

Finally note that Observation 4 holds whenever p is not an R-type reflex vertex. Thus, if229

p is a reflex vertex of type R, it suffices to first compute its shadow, and return the same as230

NextVisReflex(Shadow(p, C), C) would.231
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Given an independent chain C = (c1, . . . , cn), our base algorithm works as follows: start from232

c1, use NextVisReflex to obtain the next visible reflex vertex, and report the CCW-maximal233

chain starting from c1. We then repeat the procedure starting from the last reported vertex until234

we reach cn (see the details in Algorithm 1).235

Theorem 1. Algorithm 1 reports the visibility polygon of an independent chain of n vertices and236

r visible reflex vertices in counterclockwise order in O(nr) time, using O(1) additional variables.237

Proof. Correctness of the algorithm is given by Lemma 2 and Corollary 1. It is easy to verify238

that Algorithm 1 uses a constant number of variables, hence it remains to show a bound on the239

running time. Notice that at each iteration of the algorithm we report a visible reflex vertex.240

Hence, we can charge the cost of NextVisReflex operation to the reported vertex. Since no241

vertex is reported twice and operation NextVisReflex needs linear time, the total running time242

is bounded by O(nr).243

Algorithm 1 Computing the visibility polygon of an independent chain C = (c1, . . . cn)

1: cstart ← c1 (or cstart ← Shadow(c1, C) if c1 is an R-type reflex vertex)
2: repeat
3: v ← NextVisReflex(cstart, C)
4: if v = cn then
5: (* The remainder of the chain is visible *)
6: cstop ← cn
7: cnext ← cn
8: else
9: (* We found next visible reflex v. The reported chain will depend on the type of v *)

10: if v is of type R then
11: cstop ← v
12: cnext ← Shadow(v, C)
13: else
14: cstop ← Shadow(v, C)
15: cnext ← v
16: end if
17: end if
18: Report every vertex between cstart and cstop
19: cstart ← cnext
20: until cstart = cn

5 A divide-and-conquer approach244

We now consider the case in which we are allowed a slightly larger amount of variables. We245

parametrize the running time of our algorithms by the number of working variables allowed,246

which we denote by s. Our aim is to obtain an algorithm whose running time decreases as s247

grows.248

Using the result of the previous section as base algorithm, we now present a divide-and-conquer249

approach to solve the problem. The general scheme of our algorithm is the natural one: choose a250

reflex vertex z inside the cone ∆C , perform a ray shooting query to find the visible point in the251

direction of z, and split the polygonal chain into two smaller independent subchains C1, C2 (see252

Fig. 4, left). We repeat the process recursively, until either (1) a chain C has a constant number253

of reflex vertices (see Fig. 4, right) or (2) the depth of the recursion is such that we would exceed254

the number of allowed working variables. Whenever either of these two conditions is met, we255

compute the visibility polygon of the chain using Algorithm 1. See a scheme of this approach in256

Algorithm 2.257
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Figure 4: Left: Split of C into two subchains C1, C2 using a visible point x in the direction of a
reflex vertex z. Right: A polygonal chain C with no reflex vertices inside the cone ∆C , only one
subchain of C is visible.

Algorithm 2 Given a polygonal chain C = (c1, . . . , cn) such that c1, cn are both visible points of
P and a positive integer depth d (initially 1), compute VisC

1: k ← number of reflex vertices of C inside the cone ∆C
2: if k ≤ 2 or d ≥ h(s) then
3: Run Algorithm 1 on C
4: else
5: v ← findPartitionVertex(C)
6: x← RayShooting(v, C)
7: Algorithm 2({c1, . . . , x}, d+ 1)
8: Algorithm 2({x, . . . , cn}, d+ 1)
9: end if

In order to control the depth of the recursion we use a depth counter, hence the algorithm stops258

dividing once d = h(s) (for some value h(s) ∈ O(s) that will be determined later). Note that the259

split direction is decided by subroutine FindPartitionVertex(C). This procedure should give a260

direction so that the resulting subchains C1 and C2 have roughly the same complexity. Naturally,261

it must also run reasonably fast and use O(s) variables.262

In this section we propose two different methods to choose the partition vertex. The first one263

uses the approximate median finding algorithm of Raman and Ramnath [22]. The second one is264

randomized, and simply chooses a random reflex vertex among those lying in the cone ∆C . We265

first show that, regardless of the partition method used, the visibility polygon will be correctly266

computed.267

Lemma 3. Algorithm 2 correctly reports the visibility polygon of an independent chain in coun-268

terclockwise order, using O(s) variables.269

Proof. The divide-and-conquer approach repeatedly partitions the input into independent chains.270

Each subchain will eventually be reported. By Observation 2, the union of reported vertices is271

equal to the visibility polygon, hence correctness is derived from the correctness of Algorithm 1.272

Regarding space, the subroutines called in this algorithm (findPartitionVertex and273

RayShooting) use O(s) and O(1) variables, respectively. Once the procedure finishes, their274

working space can be reused for further calls, hence we never use more than O(s) working space275

at the same time. It remains to consider the memory used implicitly for handling the recursion.276

Since each step of the algorithm needs a constant number of variables, the total memory needed277

will be proportional to the recursion depth. Since h(s) ∈ O(s), the claim is shown.278

In what follows we present two implementations of FindPartitionVertex.279
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5.1 Deterministic variant280

We start by giving a deterministic algorithm for FindPartitionVertex(C) using O(s) extra281

variables. For this purpose, we will use the algorithms by Raman and Ramnath presented in [22],282

which compute an approximation of the median value of a given set using reduced workspace.283

Given a chain C, let Θ = {θq(vi) : vi is a reflex vertex of C lying inside ∆C}. An element284

θq(vi) ∈ Θ is called a 2/3-median of Θ if there are at most 2|Θ|/3 elements in Θ smaller that285

θq(vi) and at most 2|Θ|/3 greater that θq(vi). Given two elements z, z′ of Θ such that z < z′,286

we say that z, z′ is an approximate median pair if at most |Θ|/2 elements of Θ are smaller than287

z, at most |Θ|/2 lie between z and z′, and at most |Θ|/2 elements are greater that z′. Notice288

that if z, z′ is an approximate median pair, then either z or z′ is a 2/3-median of Θ. Moreover,289

we can determine which of the two is a 2/3-median with one scan of C. Thus, we say that every290

approximate median pair induces a 2/3-median of Θ.291

Raman and Ramnath [22] presented two algorithms to find an approximate median pair. The292

first one is used whenever s ∈ o(log r), and allows us to find a 2/3-median of Θ in O(snr1/s)293

time using O(s) variables (Lemma 5 of [22], assigning their parameter p to r1/s). For the case294

s ∈ Ω(log r), they propose another algorithm (stated in Lemma 3 of [22]) that computes an295

approximate median pair in O(n log r) time, using O(log r) variables. We note that Raman and296

Ramnath used these algorithms to afterwards obtain the exact median, but in here we only need297

an approximation.298

FindPartitionVertex(C) will execute the approximate median pair algorithm, and return299

the reflex vertex v that induces a 2/3-median of Θ. By construction, each of the two cones obtained300

from ∆C , by shooting a ray through v, will contain at most 2/3 of the reflex vertices in ∆C .301

Let P (n, r) be the running time of the approximate median finding algorithm on a chain302

C of length n with r reflex vertices inside ∆C (that is, P (n, r) = O(snr1/s) if s ∈ o(log r),303

P (n, r) = O(n log r) otherwise). We set h(s) = s log3/2 2 ≈ 1.71s (if s ∈ o(log r)) or s = log3/2 r304

(otherwise). Observe that in both cases we have h(s) ∈ O(s). We now prove an upper bound on305

the running time of Algorithm 2 with this implementation of FindPartitionVertex(C).306

Theorem 2. For any s ∈ O(log r), VisC can be computed in O(nr2s + n log2 r) time using O(s)307

variables.308

Proof. Consider any node ui of the recursion tree of the algorithm and let Ci be the chain processed309

at this node. Let ni and ri be the size of Ci and the number of reflex vertices lying inside ∆Ci ,310

respectively.311

If ui is a non-terminal node of the recursion, then the running time at ui is bounded by312

O(P (ni, ri)). Note that a vertex of the input can only appear in at most two chains of the same313

depth. Hence, the total cost of all non-terminal nodes of a fixed level j in the recursion tree314

is bounded by
∑
ui
O(P (ni, ri)) ≤ O(P (n, r)). By definition, there are at most h(s) levels of315

recursion, hence the time spent in all the non-terminal executions of the algorithm is bounded by316

O(P (n, r)h(s)).317

It remains to consider the time spent in the terminal nodes. Each terminal node ui will need318

O(niri) time, where ri denotes the number of visible reflex vertices on Ci. Recall that terminal319

nodes are only executed whenever either Ci has a constant number of reflex vertices or we have320

reached h(s) levels of recursion. Further note that, at each level of recursion at least a third of321

the reflex vertices are discarded. In particular, we have that ri ≤ r( 2
3 )h(s).322

Similar to non-terminal nodes, vertices cannot be present in more than two terminal nodes.
Thus, the total time spent in the terminal nodes is bounded by∑

ui

O(niri) ≤
∑
ui

O(nir(2/3)h(s))) ≤ O(nr(2/3)h(s)).

Therefore, the total time spent by the algorithm becomes O(P (n, r)h(s) + nr(2/3)h(s)).323

This expression can be simplified by distinguishing between different workspace sizes.324
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Case s ∈ o(log r). In this case we have P (n, r)h(s) = O(s2nr1/s), and in particular O(s2nr1/s) ∈325

O(nr1/3) (since s is a parameter that can be chosen to be at least 3). Further recall that326

h(s) = s log3/2 2, and in particular (2/3)h(s) = 2−s. Thus, the second term simplifies to nr
2s .327

Since s ≤ log2(r)/3 and the running time decreases as s grows, we have nr
2s ≥ nr

r1/3
∈ Ω(n

√
r).328

That is, the running time of our algorithm is expressed as the sum of two terms that, when329

s ∈ o(log r), the first one is at most O(nr1/3) whereas the second one is at least Ω(n
√
r).330

Asymptotically speaking, the first one can be ignored, and the running time is dominated331

by O(nr2s ) (i.e., applying Algorithm 1 to each terminal node).332

Case s ∈ Θ(log r). In this case we can use the faster method of Raman and Ramnath (i.e.333

P (n, r) = O(n log r)). Recall that in this case we set h(s) = log3/2 r, hence (2/3)h(s) = 1/r.334

In particular, the running time of the second term simplifies to O(nr(2/3)h(s)) = O(n).335

Since s ∈ Θ(log r), the running time is dominated by the first term (i.e., finding the split336

direction), which is O(P (n, r)h(s)) = O(n log2 r).337

Observe that in both cases the running time is bounded by O(nr2s + n log2 r), hence the claim338

holds.339

Remark Note that, although we only consider algorithms that use up to O(log r) variables, one340

could study what happens whenever more space is allowed. However, we note that increasing the341

size of our workspace will not reduce the running time, since the time bottleneck of this approach342

is determined by the approximate median method of Raman and Ramnath.343

5.2 Randomized approach344

Whenever s ∈ Θ(log n), the running time of the previous algorithm is dominated by the Find-345

PartitionVertex procedure. Motivated by this, in this section we consider a faster (albeit346

randomized) partition method.347

The randomized method proceeds as follows: let k be the number of reflex vertices of C lying348

inside ∆C (note that k can be computed in linear time by scanning C). Select a random number349

i between 1 and k (uniformly at random). The idea is to output the i-th reflex vertex inside ∆C350

(computed by walking counterclockwise along C). However, we must first check that this vertex351

will make a balanced partition. In order to check so, we make another scan of C, and we count the352

angular rank of the i-th reflex vertex (among the reflex vertices in ∆C). If its rank is between k/3353

and 2k/3, we use it as partition vertex. Otherwise, we pick another random number and repeat354

the process until such a vertex is found.355

Lemma 4. The randomized version of FindPartitionVertex has expected running time O(n).356

Proof. The probability that, when choosing a reflex vertex uniformly at random, we pick one whose357

rank is between 1/3 and 2/3 is exactly 1/3. If each time we make the choices independently, we358

are performing Bernoulli trials whose probability of success is 1/3. Hence, the expected number359

of times we have to choose a random index is a constant (three in this case). For each try we only360

need to check its rank (which can be done in O(n) time by performing two scans of the input).361

Therefore we conclude that the expected running time of FindPartitionVertex is O(n).362

Theorem 3. For any s ∈ O(log r), VisC can be computed in O(nr2s + n log r) expected time using363

O(s) variables.364

Proof. The proof is identical to the proof of Theorem 2, just taking into account that now P (n, r) =365

O(n), hence the running time of the second term is decreased by a log r factor.366

Observe that this algorithm is faster than the previous one when s ∈ Θ(log r). We conclude367

by summarizing the different algorithms presented in this paper.368
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Theorem 4. Given a polygon P of n vertices, out of which r are reflex, the visibility polygon of a369

point q ∈ P can be computed in O(nr̄) time using O(1) variables (where r̄ is the number of reflex370

vertices of VisP) or O(nr2s ) time using O(s) variables (for any s ∈ o(log r)). If Ω(log r) variables371

are available, the running time decreases to O(n log2 r) time or O(n log r) randomized expected372

time.373
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