
Mexican Conference on Discrete Mathematics and Computational Geometry

Isoperimetric Enclosures

Greg Aloupis∗† Luis Barba∗‡§ Jean-Lou De Carufel‡¶ Stefan Langerman∗‖

Diane L. Souvaine∗∗

Abstract

Let S be a set of n > 2 points in the plane whose convex hull has perimeter t. Given a number
P ≥ t, we study the following problem: Of all curves of perimeter P that enclose S, which is the
curve that encloses the maximum area? In this paper, we give a complete characterization of this
curve. We show that there are cases where this curve cannot be computed exactly and provide
an O(n logn)-time algorithm to obtain an approximation of this curve, with arbitrary precision,
having the same combinatorial structure.

1 Introduction

In geometric optimization, we are often interested in finding an object that maximizes or minimizes an
objective function subject to geometric constraints. For example, given a set S of points in the plane
we can ask for the minimum enclosing circle of S [9], or for the unit circle that contains the maximum
number of points of S.

In this paper, we study optimization problems involving simple planar curves of fixed perimeter, in
other words involving isoperimetric curves. In general, isoperimetric problems involve optimizing a given
function over a family of isoperimetric curves. The classical isoperimetric problem is to maximize the
area enclosed by a curve of fixed perimeter. It was known since ancient Greece that the solution to
this problem is the circle. However, a rigorous proof of this statement was obtained until the late 19th
century and it is known as the Isoperimetric Theorem. The main issue was to prove the existence of
this curve as the limit of a sequence of polygons that approximate the circle [3]. An intuitive proof of
the Isoperimetric Theorem can be found in [10]. A dual theorem states that among all plane figures of
equal area, the circle is the one with minimum perimeter.

The closely related Dido’s problem is present in greek mythology. According to the legend, Dido was
fleeing from her homeland and seeking asylum in northern Africa. She was offered a piece of land as
large as she could encompass with an oxhide. After cutting the hide into one long strip, she formed a
curve between two coastal points, thus claiming a large area that later came to be the city of Carthage.
Dido’s problem is hence known as that of maximizing the area bounded by a straight line (in her case,
the coast) and a curve of fixed length. As Dido figured out, the maximum area is obtained when the
curve is in the shape of a half circle with endpoints on the coast line.

Some variants of isoperimetric problems have been addressed by adding geometric constraints. Given
a set S of n > 2 points in the plane, Bose and De Carufel [5] considered the family of isoperimetric
triangles enclosing S, with the additional constraint that one angle was also fixed. They provided an
algorithm to find one such triangle of maximum (or minimum) area in O(n2) time and showed how to
solve a dual version of the problem. That is, among all triangles sharing the same area that enclose S
and have one equal angle, compute a triangle with maximum (or minimum) perimeter.

By adding geometric constraints, we extend the isoperimetric problem as follows.
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Problem 1 Let S be a set of n > 2 points in the plane and let P > 0 be a given value. Among all the
curves of perimeter P that enclose S, which is the curve that encloses the maximum area?

In Section 2, we provide a full characterization of the solution to Problem 1. Among other properties,
we show that the solution to this problem is a convex curve made of circular arcs of equal radius. There-
fore, to obtain a full description of this solution, we need to compute their common radius. However,
as described in Section 4, it is unlikely that a closed-form expression to represent this radius always
exists. That is, we show that if Schanuel’s conjecture [2, Chapter 12] is true, then there are instances
of Problem 1 for which we cannot compute the radius of these arcs. However, according to Chow [6], at
present, a proof of this conjecture seems to be out of reach.

In light of this result, in Section 3 we present an algorithm to compute an approximation of the
solution of Problem 1. We show how to find a convex curve made of circular arcs that encloses S such
that its perimeter is arbitrarily close to P , and its enclosed area is maximum among all curves that
share the same perimeter.

Finally, we discuss the dual version of this problem where we ask, among all curves of some fixed area
A that enclose S, what is the curve with the minimum perimeter? We show that computing the solution
of this dual problem is equivalent to that of its primal formulation. Consequently, all results presented
in this paper can be used to solve the dual formulation of Problem 1.

2 Fixed Perimeter, Maximum Area

We say that a closed curve is convex if the region it encloses is convex. The area of a closed curve is
the area it encloses. Given a positive number P , a P -curve is either a simple closed curve of perimeter
P or a simple open curve of length P . Given a subset R of the plane, a (P,R)-curve is a P -curve
that encloses R. The following lemma is a simple extension of a known equivalent statement regarding
area-maximizing isoperimetric curves in the absence of R.

Lemma 1 Given a number P > 0 and a set of points S, any (P, S)-curve of maximum area is convex.

Proof. Let C be a (P, S)-curve of maximum area. Assume that C is not convex for the sake of
contradiction. Therefore, there exists a line ` passing through two points x and y on C such that the
open segment (x, y) is contained in the exterior of C , and C is completely contained in one of the closed
halfplanes defined by `.

Let γx,y be the open curve along C that joins x with y contained in the interior of the convex hull
of C . Let γ∗x,y be the reflection of γx,y on the line `. By replacing γx,y by γ∗x,y on C , we obtain a
curve C ∗ with perimeter P but larger area. Moreover, the region enclosed by C is also enclosed by C ∗.
Because C and γ∗x,y lie on opposite sides of `, C ∗ is simple and hence it is a (P, S)-curve with larger
area than C yielding a contradiction. Therefore, C must enclose a convex region of the plane. �

Because any convex curve enclosing a point set also encloses its convex hull, for the rest of this paper
we assume that we are given a convex n-gon Q that we want to enclose with some convex (P,Q)-curve.
This assumption adds an Θ(n log n) preprocessing step to the final algorithm.

Given two open curves C1 and C2 sharing at least one endpoint, C1+C2 denotes the curve obtained by
the concatenation of the two curves. The following lemma is a direct consequence of the Isoperimetric
Theorem, however, for the sake of completeness we include a full proof.

Lemma 2 Let xy be a closed segment and let P be a positive number. If C is an open P -curve joining
x with y such that C + xy is a simple closed curve of maximum area, then C is a circular arc.

Proof. Assume that C is not a circular arc for the sake of contradiction. Let D be the unique circular
arc with endpoints x and y of length P (modulo reflection). Let Do be the circular arc such that D+Do

is a circle and let α be the length of Do. By definition, C is the P -curve such that C +xy is of maximum
area. Thus, C +Do is a (P + α)-curve having a larger area than D +Do as the cap formed by D0 and
xy is present on both curves. However, by the Isoperimetric Theorem proved in Chapter X of [10], we
know that D+D0 is the unique (P +α)-curve of maximum area which yields a contradiction. Thus, C
is a circular arc equal to D. �
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Figure 1: Illustration of the proof of Theorem 4. Polygon Q = v0v1...v8 appears in light gray. a) Two arcs Γ
and Γ′ of C having different radii. Points u, v and u′, v′ lie on the arcs Γ and Γ′, respectively, with the property
that |uv| = |u′v′|. b) By swapping the arc that connects u with v along Γ with the one that connects u′ with v′

along Γ′, we obtain a non-convex curve C ′ with the same area and perimeter.

Given a closed region R of the plane, let ∂R denote its boundary.

Lemma 3 Let P be a positive number and let Q be a convex polygon. If C is the (P,Q)-curve of
maximum area, then C is a sequence of one or more curves, each one being either a circular arc or a
segment flush with ∂Q. Moreover, if C is not a circle, then the endpoints of these curves lie on ∂Q.

Proof. Let z be a point on C . Because C encloses Q, z lies either in the complement or on the
boundary of Q. If z lies in the complement of Q, then let z∗ be the closest point to z in Q and let `
be the perpendicular bisector of the segment zz∗. Let Π` be the open halfplane supported by ` that
contains z. By Lemma 1, C is convex. Because C also encloses Q, ` intersects C at exactly two points
x and y. Let γz ⊂ C be the curve joining x with y contained in Π`. By Lemma 2, γz must be a circular
arc whose interior contains z. Therefore, every point of C is either on the interior of a circular arc if it
lies in the complement of Q, or otherwise lies on the boundary of Q. �

Lemma 3 implies that no two arcs of C , supported by different circles, can meet in the complement
of Q, i.e., every arc of C must have its endpoints on the boundary of Q. This implies that C is the
concatenation of circular arcs and segments flush with the boundary of Q. We proceed to prove this in
the following main result of this section.

Theorem 4 Let P be a positive number and let Q be a convex polygon. If C is the (P,Q)-curve of
maximum area, then C is a convex curve that consists of a sequence of circular arcs of equal radius.
Moreover, if C consists of at least two circular arcs, then their endpoints are vertices of Q.

Proof. By Lemma 3 we know that C is a convex P -curve that consists of circular arcs, some of which
can have an infinite radius. Suppose that at least two arcs of C have different radius (possible ∞) for
the sake of contradiction. Let Γ and Γ′ be two arcs of C with different radii; see Figure 1. Let u, v ∈ Γ
and u′, v′ ∈ Γ′ be points such that straight-line segments uv and u′v′ have equal length. Moreover, by
taking this length sufficiently small, we can ensure that the segments uv and u′v′ do not intersect Q.

Let γ be the circular arc with endpoints u and v contained in Γ. Define γ′ analogously for u′, v′ and
Γ′. If we swap γ and γ′, we obtain a (P,Q)-curve C ′ such that area(C ) = area(C ′). However, since the
radii of Γ and Γ′ are different, C ′ is not convex. Thus, C ′ is not optimal by Lemma 1 and hence, there
is a curve with perimeter P and area larger than A, which is a contradiction to the optimality of C .
Therefore, all circular arcs of C must have the same radius.

By Lemma 3, we know that every arc of C has its two endpoints on the boundary of Q. However,
if two arcs of C meet at a point on ∂Q that is not a vertex of Q, we would obtain a non-convex curve
yielding a contradiction to Lemma 1. Therefore, if two arcs of C meet, they do so at a vertex of Q. �

To complete the characterization of the (P,Q)-curve of maximum area, we use the following well-
known result.
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Lemma 5 (Cauchy’s Arm Lemma [11, p. 110]) Let Q = (v0, v1, . . . , vk, v0) be a convex polygon where
each consecutive pair of vertices is connected by an edge ei = vi−1vi, and where the internal angle at
vertex vi between ei and ei+1 (modulo k) is θi. If we remove the edge vkv0 from Q and increase the
value of some nonempty subset of the angles θi while keeping the length of all remaining edges fixed
and every θi ≤ π, then the distance between the endpoints v0 and vk strictly increases.

Lemma 6 Let C = (v0, v1, . . . , vk, v0) be the (P,Q)-curve of maximum area, where vi and vi+1 (modulo
k) are connected by a circular arc ai, and each ai has the same radius. If Ci is the circle extending arc
ai, then Q is enclosed by Ci.

Proof. If C is a circle, then it consists of a unique arc and the result is trivial. Therefore, assume that
C consists of at least two circular arcs. We prove the result for C0, however, the proof is the same for
every circle extending an arc of C . Let c0 be the center of circle C0. Let `0 (resp. `1) be the line passing
through c0 and v0 (resp. v1). Notice that `0 and `1 split the plane into four regions R0, R1, R2 and R3,
labeled in clockwise order around c0, starting with the region containing the arc a0; see Figure 2(a). We
claim that for every 0 ≤ j ≤ k, the vertex vj lies inside or on the boundary of C0. If this claim is true,
then as the curvature of C0 and every arc along C is the same, C is contained in C0. Moreover, because
Q is enclosed by C , we can conclude that Q is also enclosed by C0 yielding our result. To prove that vj
lies inside C0, we consider two cases depending on the position of c0.
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Figure 2: a) The four regions defined by the lines through v0, c0 and through v1, c0, where c0 is the center of
the circle extending the arc a0. b) The construction to prove that v3 is in the circle extending a0. The path
T = (c0, v0, v1, v2, v3) and the angles α1, α2, θ1 and θ2 are depicted, all being smaller than 180 degrees. c) By
opening α1 and α2 to 180 degrees, v0, v1 and v2 become co-circular while the angles θ1 and θ3 increase. Points
c0 and v3 get farther away after this deformation, which implies that v3 was inside the circle extending a0 before
the deformation of T .

Case 1. If c0 lies inside of Q, then assume that vj lies in R1. A similar proof follows if vj lies in R2

or R3. Let T = (c0, v0, v1, . . . , vj−1, vj , c0) be a simple polygon enclosed by C . Because every vertex of
C is also a vertex of Q by Theorem 4, we know that T is a convex polygon. For 0 < i < j, consider the
two lines passing through vi that are tangent to Ci and Ci−1, respectively, and let αi be the external
angle between these lines; see Figure 2(b) for an illustration. Because C is convex, every αi ≤ 180 and
equality holds if and only if both ai−1 and ai belong to the same circle.

Remove the edge vjc0 from T to obtain a polygonal chain T ◦ with endpoints c0 and vj . Continuously
deform T ◦ by making every angle αi equal to 180 while keeping the length of its edges fixed, i.e., we
make v0, v1, . . . , vj co-circular while maintaining the distance between consecutive vertices along T ◦.
If we assume that c0, v0 and v1 remain at their original location, then every vertex vi of T ◦ ends up
lying on the circle C0 after this deformation. By increasing the value of each αi to 180, the internal
angle θi = ∠vi−1vivi+1 at vi also increases while remaining smaller than 180 degrees; see Figure 2(c).
Therefore, Lemma 5 guarantees that the distance between the endpoints of T ◦ increases after this
deformation, i.e., the points c0 and vj get farther apart. Because every vertex of T ◦ lies on the boundary
of C0 after the deformation, vj was originally closer to c0 and hence, it was enclosed by circle C0.
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Figure 3: Proof of Case 2 of Lemma 6 where v2 is the vertex with the largest index i such that the curve
T ′ = (c0, v0, v1, . . . , vi, c0) is convex.

An analogous proof follows if vj lies in R3. If vj lies in R2, let x be the intersection between the segment
v0v1 and the line through vj and c0. Then, consider the convex polygon T = (c0, x, v1, v2, . . . , vj−1, vj , c0)
and apply the same argumentation.

Case 2. If c0 lies outside of Q, then no vertex of Q lies in R2. Notice that if vj lies in R0, it is contained
in the triangle 4v0v1c0 which implies by convexity that vj is enclosed by C0. Assume that vj lies in R1

and notice that the same proof used in Case 1 holds as long as T = (c0, v0, v1, . . . , vj , c0) defines a convex
polygon. If T is not convex, let 1 ≤ i ≤ j be the largest index such that T ′ = (c0, v0, v1, . . . , vi, c0)
is convex. Therefore, vi lies inside circle C0 using the proof of Case 1. Because vj lies in R1, vj lies
inside the triangle 4c0, v0, vi. Moreover, as c0, v0 and vi are all enclosed by C0, so is vj by convexity;
see Figure 3. An analogous proof holds if vj lies in R3 yielding our result. �

Let B be the smallest disk that contains Q. Notice that if the given perimeter P is larger than the
perimeter of B, then the (P,Q)-curve of maximum area is a circle of perimeter P that encloses Q (see
Chapter X of [10]). Therefore, we assume that P is smaller than the perimeter of B.

Given a number r ≥ radius(B), let Dr be the set of disks of radius r that contain Q, and let ϕr be
the intersection of all disks in Dr.

Recall that by Theorem 4, the (P,Q)-curve of maximum area, denoted by C , consists of a sequence
of circular arcs of equal radius.

Lemma 7 Let C be the (P,Q)-curve of maximum area and let r be the radius of every arc along C .
If P < perimeter(B), then C is the boundary of ϕr.

Proof. Because Q is contained in every D ∈ Dr, Q is contained in ϕr. Moreover, every arc on the
boundary of ϕr has radius r and ϕr is convex since it is the intersection of convex shapes.

Let a be an arc of C and let Da be the disk of radius r extending it. Notice that Da ∈ Dr by Lemma 6.
We claim that arc a belongs to the boundary of ϕr and we prove it by contradiction. Assume that there
is a point x on a such that x is not part of the boundary of ϕr. That is, there exists a disk D ∈ Dr such
that x is not contained in D. Because D and Da have the same radius, one of the endpoints of a lies
in the complement of D. Therefore, D does not contain Q as both endpoints of a are vertices of Q by
Theorem 4. However, Q is contained in every disk of Dr which is a contradiction. Consequently, every
arc along C is contained on the boundary of ϕr proving our result. �

By Lemma 7, we need to consider only the intersection of all disks of radius r that contain Q to
describe C . However, we further simplify this description using the following result.

Proposition 1 The intersection of every disk of radius r that contains Q is the intersection of every
disk of radius r that contains Q and whose boundary passes through at least 2 vertices of Q.

Proof. Let B be a disk containing Q. If ∂B passes through no vertex of Q, then we can continuously
move B to the left (resp. right), until ∂B reaches a vertex of Q, to obtain a disk B− (resp. B+). Since
Q ⊂ B+∩B− ⊂ B, we can ignore all disks whose boundary contains no vertex of Q when describing ϕr.
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If the boundary of B passes through a single vertex v of Q, we can rotate B clockwise and counter-
clockwise around v until ∂B reaches a second vertex of Q. In this way, we obtain two disks B− and B+

whose intersection is a lune contained in B. Because Q ∈ B+ ∩ B−, by ignoring B, the intersection of
all disks of radius r that contain Q remains unchanged. In other words, we can consider only the disks
that pass through at least two vertices of Q to describe ϕr. �

3 Computing the (P,Q)-curve of maximum area

In this section, we show how to compute the (P,Q)-curve of maximum area using the farthest-point
Voronoi diagram of the vertices of Q.

Let cB be the center of B and let rB be its radius. The farthest-point Voronoi diagram of the vertices
of Q, denoted by V(Q), can be seen as a tree with n unbounded edges [7]. We can think of the leaves
of this tree as points at infinity in the direction of these unbounded edges. Because cB lies either on a
vertex of V(Q) or on one of its edges, we can assume V(Q) to be rooted at cB (if cB is not a vertex,
insert it by splitting the edge where it belongs). Given a point x in the plane, let ρ(x) be the radius
of the minimum enclosing circle of Q with center on x. The following is a well known property of the
farthest point Voronoi diagram.

Lemma 8 The map ρ is monotonically increasing along the path joining cB with any leaf of V(Q).

Given a number r ≥ rB, let Xr = {x ∈ R2 : ρ(x) = r and x is a point on V(Q)}.

Lemma 9 Let C be the (P,Q)-curve of maximum area and let r be the radius of every arc along C .
If P < perimeter(B), then C is the boundary of the intersection of every disk of radius r centered at a
point of Xr.

Proof. Let D be a disk of radius r that contains Q such that ∂D passes through two vertices v and
v′ of Q. Since P < perimeter(B), by Lemma 7 and Proposition 1, it suffices to prove that D has its
center in Xr. Let c be the center of D and notice that any disk of radius r′ < r centered at c does
not contain v and v′ and hence, it does not contain Q. Moreover, as D contains Q, we conclude that
ρ(c) = r. Because ∂D passes through v and v′, c is equidistant from these vertices. Furthermore, as Q
is contained in D, there cannot be a vertex of Q that is farther from c than v (or v′). Therefore, c lies
on the boundary of the farthest-point Voronoi cells of both v and v′. That is, c must lie on an edge of
V(Q) which implies that c ∈ Xr yielding our result. �

By Lemma 6, the circle extending every arc on C contains Q. Therefore, the radius of every arc along
C must be greater than the radius of B. Recall that for any value r ≥ rB, ϕr is the intersection of all
disks of radius r that contain Q.

Lemma 10 Given a radius r ≥ rB, ϕr and its perimeter can be obtained in O(n) time after computing
the farthest-point Voronoi diagram of the vertices of Q.

Proof. Because rB < r, Lemma 8 implies that on every path joining the root with a leaf of V(Q), there
is a point x such that ρ(x) = r.

By Lemma 8, we can scan every edge of V(Q) to find those edges that contain a point of Xr. Because
each of these edges represents the bisector of two vertices of Q, we can determine the position of all the
points of Xr in O(n) time. Furthermore, once Xr is computed, we can reconstruct their cyclic order
along the boundary of ϕr by performing a depth first search in the tree V(Q) in linear time. Thus, ϕr
and its perimeter can be computed in O(n) time as all circular arcs have the same curvature. �

The following result states that the solution to the isoperimetric problem cannot always be computed
exactly. Therefore, we resort to approximation algorithms. The proof of the following theorem is deferred
to Section 4 for ease of readability.
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Theorem 11 There exists a convex polygon Q and a value P such that the (P,Q)-curve of maximum
area cannot be computed exactly, i.e., the radius of each arc along this curve cannot be represented as
a closed-form expression.

We finish this section by providing an algorithm to compute an approximation of the (P,Q)-curve of
maximum area with fixed but arbitrary precision. Notice that if we are not given a convex polygon but
a set of n points, we need to compute its convex hull in Θ(n log n) time as a preprocessing step.

Theorem 12 Let Q be a convex polygon and let B be the minimum disk containing Q. Given a value
P > 0, it holds that: (1) If P ≥ perimeter(B), then the (P,Q)-curve of maximal area can be computed
in O(n) time. (2) If P < perimeter(B), then we can compute an approximation of the (P,Q)-curve of
maximal area with arbitrary but fixed precision in O(n log n) time. Moreover, this approximation has
the same combinatorial structure as the optimal solution.

Proof. Compute the smallest disk B containing Q in O(n) time [9, 12]. Two cases arise:
(1) If P ≥ perimeter(B), let c be the center of B and let C be the circle of perimeter P centered on c.
(2) If P < perimeter(B), then start by computing the farthest-point Voronoi diagram V(Q) of the
vertices of Q in O(n) time [1]. Let r be the radius of every arc in C . Because C is equal to the boundary
of ϕr by Lemma 9, we can use Lemma 10 to approximate r. First, consider every vertex v of V(Q) and
assume that ρ(v) was stored during the computation of V(Q).

Sort the vertices of V(Q) by their value under ρ in O(n log n) time. Then, we can approximate the
radius of the arcs of C using a binary search for r in the set {ρ(v) : v is a vertex of V(Q)}. That is, for
a given r′ in this set, compute ϕr′ and its perimeter in O(n) time using Lemma 10. Then, compare it
with the value of P : If this perimeter is larger than P , then r > r′; otherwise, r ≤ r′. In this way, we
will find two vertices u and v of V(Q) such that ρ(u) < r < ρ(v). At this point, we know that for any
value ρ(u) < r′ < ρ(v), the curve ϕr′ has the same combinatorial structure, i.e., the vertices of ϕr′ and
their order along its boundary are the same. As ρ(u) < r < ρ(v), we have a combinatorial description
of C where only the radius r of the arcs along C has not yet been determined.

By Theorem 11, there are instances where we cannot compute r exactly. However, we can use a
binary search in the interval [ρ(u), ρ(v)] to approximate it. That is, for a given constant ε > 0, we can
compute an approximation r∗ of r such that |r∗ − r| < ε in O(n log 1

ε ) time. Therefore, we get a curve
that approximates C with arbitrary precision and that has the same combinatorial structure. �

4 Hardness of the computation of exact solutions

In this section, we prove that Problem 1 cannot always be solved exactly. By an exact solution, we
mean a solution that can be represented by a closed-form expression. The problem with closed-form
expressions is that there is no consensus in the literature on how they should be defined [4]. According
to Borwein and Crandall [4], closed-form expressions can be considered to be “a topic that intrinsically
has no ‘right’ answer.” For different reasons that we explain in the next paragraphs, we adopt the
definition of Chow [6], qualified by Borwein and Crandall [4] as “the smallest plausible class of closed
forms.” We first make a little detour to discuss polynomial equations. Let

pd(x) = 0 (1)

be a polynomial equation of degree d. If d ≤ 4, there exist general formulas to solve (1). These general
formulas are finite (closed-form) expressions that involve +, −, ×, ÷ and k

√
for any integer k ≥ 2. In

this case, we say that (1) is solvable by radicals. If d > 4, some polynomial equations are solvable by
radicals. For instance, x5 − 10x4 + 35x3 − 50x2 + 24x = x(x− 1)(x− 2)(x− 3)(x− 4). However, some
polynomial equations, such as x5 − x+ 1 = 0 are not solvable, as can be proven using Galois theory.

If the operations available at unit cost in the model of computation are +, −, ×, ÷ and k
√

for any
integer k ≥ 2, then the solutions to (1) cannot always be computed exactly when d > 4. For some
problems, the degree of any polynomial equation involved in the solution is bounded by some constant
µ. One way of getting around the unsolvability issue is to assume that any polynomial equation of degree
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less than µ can be solved in O(1) time in the model of computation. However, for some problems, the
degree of the polynomial equations involved can be shown to be unbounded in general. In such cases,
the solution cannot be computed exactly and we usually turn to approximation algorithms.

Let C be the (P,Q)-curve of maximum area. Assume that we are given the sequence v0, . . . , vk of
vertices of Q that connect consecutive edges along C . That is, C = (v0, v1, . . . , vk, v0) and each vi is
connected to vi+1 (modulo k) via a circular arc ai. By Theorem 4, we know that every arc along C has
the same radius r. Notice that to give an exact description of C , it suffices to compute the value of r.

Let ci denote the center of the circle extending ai and notice that ci lies on the bisector of vi and
vi+1. If di denotes half the distance between vi and vi+1, then the angle αi = ∠vicivi+1 is equal to
2 · arcsin(di/r). Therefore, the perimeter of arc ai is given by the equation 2r · arcsin(di/r). Because
the perimeter of C is P , to find the value of r it suffices to solve the following equation:

k∑
i=0

2r · arcsin(di/r) = P (2)

This equation is not polynomial and at first glance, it does not seem possible to convert it into a
polynomial via an appropriate change of variables. We will show that in general, there is no closed-form
expression (in Chow’s sense [6]) to express the solutions to (2).

Following Chow [6], we say that a number can be written in closed-form if it is an exponential-
logarithmic number.

Definition 2 (Exponential-Logarithmic Numbers, [6]) Let E be the set such that Q ⊂ E and for
all x, y ∈ E with y 6= 0, it holds that:

1. x+ y, x− y, xy, x/y ∈ E,

2. ex ∈ E,

3. log(y) ∈ E, where log is the branch of the natural logarithm function such that −π < Im(log(y)) ≤
π for all y.

Notice that e ∈ E, i ∈ E and π ∈ E, since e = ee
0

, i = elog(−1)/2 and π = −i log(−1). Therefore, 2πi ∈ E
and we have access to all branches of the natural logarithm. We can also compute xy for any x, y ∈ E
with x 6= 0, since xy = ey log(x). Consequently, we can compute the k-th root of any number in E (for
any integer k ≥ 2). This implies that we can compute the solutions to any polynomial equation with
rational coefficients that is solvable by radicals. Finally, we have access to all trigonometric functions,
since for instance,

sin(x) =
eix − e−ix

2i
, arcsin(x) = −i log

(
ix+

√
1− x2

)
, sinh(x) =

ex − e−x

2
.

If we suppose that the operators available at unit cost are +, −, ×, ÷, exp(·) and log(·), we can compute
any so-called elementary functions on E in O(1) time. Most problems from computational geometry can
be solved using numbers from E and the operators defined on E.

Asking whether a polynomial equation can be solved exactly corresponds to asking whether it can be
solved by radicals. Asking whether a transcendental equation like x+ ex = 0, cos(x) = x or (2) can be
solved exactly corresponds (in Chow’s sense [6]) to asking whether its solutions belong to E. Standard
results in this matter are of the form: if Schanuel’s conjecture is true, then the solution to x + ex = 0
does not belong to E [6]. Here is the statement of Schanuel’s conjecture [2, Chapter 12].

Conjecture 3 (Schanuel) If α1, α2,..., αn are complex numbers linearly independent over Q, then
the transcendence degree of the field Q (α1, e

α1 , α2, e
α2 , ..., αn, e

αn) over Q is at least n.

According to Chow [6], at present, a proof of Schanuel’s conjecture seems to be out of reach.
We now take an instance of Problem 1 and show that its solution does not belong to E, provided

that Schanuel’s conjecture is true. Let T be an equilateral triangle such that each side has length 2;
see Figure 4. Suppose we want to enclose T with a closed maximum-area curve with perimeter 7. To
compute the optimal solution, we can solve 6r · arcsin(1/r) = 7 for r ∈ R. Equivalently, we solve
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T

2

2 2

Figure 4: The red curve is the circumcir-
cle of T . The black curve is the solution to
Problem 1 when given a perimeter P = 7.

sin(r′) =
6

7
r′ , (3)

where r′ = 7
6r . Let r′ be the solution1 to (3) such that

r′ > 0. Is r′ ∈ E? Using a similar approach to Chow’s for
the proof of Theorem 2 in [6], we can prove the following
lemma.

Lemma 13 If Schanuel’s conjecture is true, then r′ 6∈ E.

As mentioned earlier, in the case of polynomial equations,
one can avoid solvability questions by adding an appropriate
operator to the model of computation. However, this is rea-
sonable provided that the polynomial equations are of bounded degree. Looking at (3), one could argue
that it suffices to add an appropriate operator to the model of computation. We could add an operator
that solves equations of the form sin(x) = λx in O(1) time, where λ can be any real number. However,
we claim that in general, the complexity of (2) is unbounded. As for the case of polynomial equations, it
means that we need to turn to approximate solutions. To prove our claim we use the following identity.

arcsin(α) + arcsin(β) = arcsin
(
α
√

1− β2 + β
√

1− α2
)

(4)

Using (4) and the change of variables r′ = P
2r , if all the di’s are different, (2) becomes

sin(r′) = R(r′) ,

where R(r′) satisfies the following: (a) It contains at least one sequence of k− 1 nested square roots.
(b) Each square root in this sequence is summed to a polynomial in r′ of degree at least 2. (c) The most
inner radicand is a polynomial in r′ of degree at least 2. Therefore, the complexity of (2) is unbounded
and r′ cannot be represented as a closed-form expression. In other words, if P = 7, then most likely the
(P, T )-curve of maximum area cannot be computed exactly. We obtain the following result.

Theorem 11 There exists a convex polygon Q and a value P such that the (P,Q)-curve of maximum
area cannot be computed exactly, i.e., the radius of each arc along this curve cannot be represented as
a closed-form expression.

We conclude this section with the following remark. Chow proved [6, Corollary 1] that if Schanuel’s
conjecture is true, then the polynomial equations with rational coefficients that can be solved within E
are precisely those that are solvable by radicals. This is one more reason to define a closed-form number
as in Definition 2.

5 Duality and open problems

We have presented a characterization of the (P,Q)-curve of maximum area. It is worth noting that
there is a dual formulation of this problem. Given a number A > area(Q), and a convex polygon Q, an
[A,Q]-curve is a simple closed curve enclosing both Q and a region of area A. The dual formulation of
Problem 1 is stated as follows.

Problem 2 Given a value A and a convex polygon Q, find the [A,Q]-curve of minimum perimeter.

The following observation will help us prove the relation between these two formulations.

Observation 4 Let C be the (P,Q)-curve of maximum area. Then, the area of C increases monoton-
ically as P increases.

Lemma 14 Given a convex polygon Q and an area A > area(Q), let C ∗ be an [A,Q]-curve of minimum
perimeter. If P is the perimeter of C ∗ then C ∗ is a (P,Q)-curve of maximum area.

1We have r′ ≈ 0.94683, from which r ≈ 1.23219.
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Proof. If A is greater than the area of the minimum enclosing disk B of Q, then the result is equivalent
to the classic isoperimetric theorem. Therefore, assume that area(Q) ≤ A ≤ area(B). Let ϕr be the
intersection of all disks of radius r that contain Q. Let rA be the radius such that ϕrA has area A.
This value always exists because the area of ϕr attains every value in [area(Q), area(B)] as the radius r
increases continuously.

Let C be the boundary of ϕrA and let P be the length of its perimeter. By Lemma 7, C is the
(P,Q)-curve of maximum area. Therefore, every curve enclosing Q of perimeter smaller than P has
area smaller than A by Observation 4. Consequently, the [A,Q]-curve of minimum perimeter must have
perimeter at least P . Moreover, as C has area A by construction, we get that C is the [A,Q]-curve of
minimum perimeter, i.e., C = C ∗. �

We conclude by stating open problems that are closely related to the problem presented in this paper.

Problem 3 Given a set of points S ∈ R2 and a value P > 0, find the (P, S)-curve of minimum area.

While Problem 3 has a similar formulation to Problem 1, it belongs to a different class of problems
as stated in the following result.

Theorem 15 Problem 3 is NP-hard.

Proof. A Steiner tree of S is a geometric tree whose vertex set contains S. Let T be a minimum
Euclidean Steiner tree of S, i.e., a minimum cost Steiner tree where the cost of an edge is its Euclidean
length. Notice that if P is equal to twice the length of T , then the solution to Problem 3 is a closed curve
of area zero obtained by going around T . Because computing the minimum Steiner tree is NP-hard [8],
computing the solution to Problem 3 is also NP-hard. �

By extending the formulation of isoperimetric problems to R3, we obtain the following problem state-
ment that, as far as we know, has not yet been studied.

Problem 4 Let S ∈ R3 be a set of points and let A > 0. Among all surfaces of area A, what is the
closed surface of (maximum) minimum volume that encloses S?
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