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Abstract
Given a set of sites (points) in a simple polygon, the farthest-point geodesic Voronoi diagram
partitions the polygon into cells, at most one cell per site, such that every point in a cell has
the same farthest site with respect to the geodesic metric. We present an O((n + m) log logn)-
time algorithm to compute the farthest-point geodesic Voronoi diagram for m sites lying on the
boundary of a simple n-gon.
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1 Introduction

Let P be a simple polygon with n vertices. Given two points x and y in P , the geodesic
path π(x, y) is the shortest path contained in P connecting x with y. Note that if the
straight-line segment connecting x with y is contained in P , then π(x, y) is a straight-line
segment. Otherwise, π(x, y) is a polygonal chain whose vertices (other than its endpoints)
are reflex vertices of P . We refer the reader to [10] for more information on geodesic paths.

The geodesic distance between x and y, denoted by d(x, y), is the sum of the Euclidean
lengths of each segment in π(x, y). Throughout this paper, when referring to the distance
between two points in P , we mean the geodesic distance between them. To ease the
description, we assume that each vertex of P has a unique farthest neighbor. This general
position condition was also assumed by Aronov et al. [3] and Ahn et al. [2] and can be
obtained by applying a slight perturbation to the positions of the vertices [7].

Let S be a set of m sites (points) contained in P . Given a point x ∈ P , a (geodesic)
S-farthest neighbor of x, is a site n(P, S, x) (or simply n(x)) of S that maximizes the geodesic
distance to x. Let FS : P → R be the function that maps each point x ∈ P to the distance
to a S-farthest neighbor of x (i.e., FS(x) = d(x,n(x))). A point x in P that minimizes FS(x)
is called the geodesic center of S (in P ).
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2 FVD of points on the boundary of a simple polygon

We can decompose P into Voronoi cells such that for each s ∈ S, Cell(s) is the set of
points x ∈ P such that d(x, s) is strictly larger than d(x, s′) for any other site s′ of S (some
cells might be empty). The set int(P ) \ ∪s∈SCell(s) defines the (farthest) Voronoi tree of S
with root at the geodesic center of S and leaves on the boundary of P . Each edge of this
diagram consists of a sequence of straight-lines and hyperbolic arcs [3].

The Voronoi tree together with the set of Voronoi cells defines the farthest-point geodesic
Voronoi diagram of S (in P ), denoted by FVD[S] (or simply FVD if S is clear from context).
Thus, we indistinctively refer to FVD as a tree or as a set of Voronoi cells.

There are many similarities between the Euclidean farthest-point Voronoi diagram and
the farthest-point geodesic Voronoi diagram (see [3] for further references). In the Euclidean
case, a site has a nonempty Voronoi cell if and only if it is extreme, i.e., it lies on the boundary
of the convex hull of the set of sites. Moreover, the clockwise sequence of Voronoi cells (at
infinity) is the same as the clockwise sequence of sites along the boundary of the convex hull.
With these properties, the Euclidean Voronoi diagram can be computed in linear time if the
convex hull of the sites is known [1].

In the geodesic case, a site with nonempty Voronoi cell lies on the boundary of the
relative convex hull. The clockwise order of the Voronoi cells along the boundary of P is a
subsequence of the clockwise order of sites along the boundary of the relative convex hull of
the sites. However, the cell of an extreme site may be empty, roughly because the polygon is
not large enough for the cell to appear. In addition, the complexity of the bisector between
two sites can be linear to the complexity of the polygon.

Previous work. Since the early 1980s many classical geometric problems have been studied
in the geodesic setting. The problem of computing the geodesic diameter of the vertices of a
simple n-gon P (and its counterpart, the geodesic center) received a lot of attention from
the computational geometry community. Chazelle [6] gave the first algorithm for computing
the geodesic diameter. This algorithm runs in O(n2) time using linear space. Suri [13]
reduced the complexity to O(n logn)-time without increasing the space complexity. Finally,
Hershberger and Suri [9] presented a fast matrix search technique, one application of which
is a linear-time algorithm for computing the diameter of P . A key step in this process is the
computation of the farthest neighbor of each vertex in P .

The first algorithm for computing the geodesic center was given by Asano and Toussaint
[4], and runs in O(n4 logn)-time. This algorithm computes a super set of the vertices of
FVD[V ], where V is the set of vertices of P . In 1989, Pollack et al. [12] improved the running
time to O(n logn) time. In a recent paper, Ahn et al. [2] settled the complexity of this
problem by presenting a Θ(n)-time algorithm to compute the geodesic center of the vertices
of a simple n-gon.

Since the geodesic center and diameter can both be computed from FVD[V ] in linear time,
the problem of computing farthest-point geodesic Voronoi diagrams is a strict generalization.
For a set S of m points in P , Aronov et al. [3] presented an algorithm to compute FVD[S] in
O((n+m) log(n+m)) time. While a trivial lower bound of Ω(n+m logm) is known for this
general problem, there has been no progress closing this gap. In other words, it is not known
whether or not the dependence on n, the complexity of P , is linear in the running time. In
fact, this problem was explicitly posed by Mitchell [10, Chapter 27] in the Handbook of
Computational Geometry.

Our result. In this paper, we present an O((n+m) log logn)-time algorithm to compute
FVD of m points on the boundary of a simple n-gon. This is the first improvement on the
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computation of geodesic farthest-point Voronoi diagrams since 1993 [3]. While we consider
only sites lying on the boundary of the polygon, our result suggests that the complexity of
the polygon has only a close-to-linear dependence in the computation of Voronoi diagrams.
We believe our results could be used as a stepping stone to solve the question posed by
Mitchell [10, Chapter 27].

Outline. The algorithm consists of three phases. First, we compute the farthest-point
geodesic Voronoi diagram restricted to the boundary of the polygon. Then we recursively
decompose the interior of the polygon into smaller (non-Voronoi) cells until the complexity
of each of them becomes constant. Finally, we explicitly compute the farthest-point geodesic
Voronoi diagram in each of the cells and merge them to complete the description of the
Voronoi diagram.

In order to compute the Voronoi diagram of S, we start by computing the restriction of
FVD[S] to the boundary of P in linear time. A similar approach was followed by Aronov et al.
[3]. However, their algorithm spends Θ(n logn) time and uses completely different techniques.
The main tool used to speed up the algorithm is the matrix search technique introduced by
Hershberger and Suri [9] which provides a “partial” description of FVD[S] ∩ ∂P , (i.e., the
restriction of FVD[S] to the vertices of P .) To extend it to the entire boundary of P , we
borrow some tools used by Ahn et al. [2]. This reduces the problem to the computation of
upper envelopes of distance functions which can be completed in linear time.

Once FVD[S] restricted to ∂P is computed, we recursively split our polygon into cells.
To split a cell whose boundary consists of k geodesic paths, we construct a closed polygonal
path that visits roughly

√
k endpoints of the k geodesic paths. Intuitively, To choose these

endpoints, we start at the endpoint of a geodesic path bounding the cell. Then, we walk
along the boundary and stop at another endpoint after skipping

√
k of them, choose this

endpoint and repeat. Between any two consecutive chosen endpoints we consider the geodesic
path connecting them. The union of all these geodesic paths can be computed in time linear
to the complexity of the cell [11] and produces smaller simple polygons. By recursively
repeating this procedure on each resulting cell, we guarantee that after O(log logn) rounds
the boundary of each cell consists of a constant number of geodesic paths. In particular,
we guarantee that each cell is either a pseudo-triangle, a quadrilateral or a simple polygon
enclosed by a convex chain and a concave chain which we call a lune-cell.

While decomposing the polygon, we also compute the farthest-point geodesic Voronoi
diagram of S restricted to the boundary of each cell. Each round can be completed in linear
time which leads to an overall running time of O((n+m) log logn).

Finally, we compute the farthest-point geodesic Voronoi diagram restricted to each cell
in time proportional to the complexity of the cell and the diagram inside the cell using the
algorithm in [5].

2 Decomposing the boundary

Given a set A of points, let ∂A and int(A) denote the boundary and the interior of A,
respectively. Let P be a simple n-gon and S be a set of m sites (points) contained in ∂P .
Throughout this paper, we will make the assumption that S is the set of all vertices of P .
This assumption is general enough as we show how to extend the result to the case when S
is an arbitrary set of sites contained on the boundary of P in Section 6.

The following result was used by Ahn et al. [2] and is based on the matrix search technique
developed by Hershberger and Suri [9].
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I Lemma 1 (Result from [9]). We can compute the S-farthest neighbor of each vertex of P
in O(n) time.

Using Lemma 1, we mark the vertices of P that are S-farthest neighbors of at least one
vertex of P . Let M denote the set of marked vertices of P (clearly this set can be computed
in O(n) time after applying Lemma 1). In other words, M contains all vertices of P whose
Voronoi region contains at least one vertex of P .

For a marked vertex w of P , the vertices of P whose farthest neighbor is w appear
contiguously along ∂P [3]. That is, given an edge uv such that n(u) = n(v), we know that
n(x) = n(u) = n(v) for each point x ∈ uv. Therefore, after computing all these farthest
neighbors, we effectively split ∂P into subchains, each associated with a different vertex of
M (see [2] further for the first use of this technique).

Given two points x and y on ∂P , let C[x, y] denote the portion of ∂P from x to y in
clockwise order. We say that three (nonempty) disjoint sets A1, A2 and A3 contained in ∂P
are in clockwise order if A2 ⊂ C[a, c] for any a ∈ A1 and any c ∈ A3. (To ease notation, we
say that three points x, y, z ∈ ∂P are in clockwise order if {x}, {y} and {z} are in clockwise
order).

For a polygonal chain A with endpoints p and q, we say A is a transition chain if
n(p) 6= n(q) and neither n(p) nor n(q) are interior vertices of A. In particular, if an edge ab
of P is a transition chain, we say that it is a transition edge.

I Lemma 2 ([3, Corollary 2.7.4]). The order of sites with nonempty Voronoi cells along ∂P
is the same as the order of Voronoi cells along ∂P .

Let ab be a transition edge of P such that b is the clockwise neighbor of a along ∂P .
Recall that we have computed n(a) and n(b) in the previous step and note that a, b,n(a),n(b)
are in clockwise order. Let v be a vertex of P such that n(a), v,n(b) are in clockwise order.
By Lemma 2, if there is a point x on ∂P whose farthest neighbor is v, then x must lie on ab.
In other words, the Voronoi cell Cell(v) restricted to ∂P is contained in ab and hence, there
is no vertex u of P such that n(u) = v.

Since we know which vertex is the farthest neighbor of each non-transition edge of P , to
complete the description of FVD restricted to ∂P it suffices to compute FVD restricted to
transition edges. To this end, we need some tools introduced in the following sections.

2.1 The apexed triangles
An apexed triangle 4 = (a, b, c) with apex a(4) = a is a triangle contained in P with an
associated distance function g4(x) such that (1) a(4) is a vertex of P , (2) there is an edge
of ∂P containing both b and c, and (3) there is a vertex d(4) of P , called the definer of 4,
such that

g4(x) =
{
‖x− a(4)‖+ d(a(4),d(4)) = d(x,d(4)) if x ∈ 4
−∞ if x /∈ 4,

where ‖x− y‖ denote the Euclidean distance between x and y.
Intuitively, 4 bounds a constant complexity region where the geodesic distance function

from d(4) can be obtained by looking only at the distance from a(4). We call the side of
an apexed triangle 4 opposite to the apex the bottom side of 4. Note that the bottom side
of 4 is contained in an edge of P .

The concept of the apexed triangle was introduced by Ahn et al. [2] and was key to
their linear-time algorithm to compute the geodesic center. After computing the farthest
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S-neighbor of each vertex, they show how to compute a linear number of apexed triangles
in linear time with the following property: for each point p ∈ P , there exists an apexed
triangle 4 such that p ∈ 4 and d(4) = n(p). By the definition of the apexed triangle, we
have d(p,n(p)) = g4(p). In other words, the distance from each point of P to its farthest
neighbor is encoded in one of the distance functions associated with these apexed triangles.
To summarize the results presented by Ahn et al. [2], we need some definitions. Given a
chain C contained in ∂P with endpoints u and v, the funnel of a site s to C, denoted by
γs(C), is the weakly simple polygon contained in P bounded by C, π(u, s) and π(s, v).

I Lemma 3 (Summary of [2]). Given a simple n-gon P with vertex set S, we can compute
a set of O(n) apexed triangles in O(n) time with the property that for any site s ∈ S, the
union of each apexed triangle with definer s is a funnel γs such that Cell(s) ⊂ γs.

While Lemma 3 is not explicitly stated by Ahn et al. [2], a closer look at the proofs of
Lemmas 5.2 and 5.3, and Corollaries 6.1 and 6.2 reveals that indeed, all the properties stated
above hold. In other words, Lemma 3 states that for each site s of S, the set of apexed
triangles with definer s forms a connected component. In particular, the union of their
bottom sides is a connected chain along ∂P . Moreover, these apexed triangles are interior
disjoint.

2.2 The refined farthest-point geodesic Voronoi diagram
We consider a refined version of FVD which we call the refined farthest-point geodesic Voronoi
diagram defined as follows: for each site s ∈ S, the Voronoi cell Cell(s) of FVD is subdivided
by the apexed triangles with definer s. That is, for each apexed triangle 4 with definer s, we
define a refined cell rCell(4) = int(4) ∩ Cell(s). Since any two apexed triangles 41 and 42
with the same definer are interior disjoint, we know that rCell(41) and rCell(42) are also
interior disjoint. We denote the set int(P ) \ ∪4rCell(4) by rFVD. Then, rFVD forms a tree
consisting of arcs and vertices. Notice that each arc of rFVD is a connected subset of either
the bisector of two sites or a side of an apexed triangle. Since the number of the apexed
triangles is O(n), the complexity of rFVD is still linear.

I Lemma 4. Let x be a point in rCell(4) for an apexed triangle 4. Then the line segment
connecting x and y is contained in rCell(4), where y is the point on the bottom side of 4 hit
by the ray from a(4) towards x. Moreover, rCell(4) is connected.

Proof. Let p be a point on the line segment connecting x and y. We have d(d(4), p) =
d(d(4), x) + d(x, p). On the other hand, d(s, p) ≤ d(s, x) + d(x, p) by the triangle inequality
for any site s. Since d(s, x) < d(d(4), x) for any site s other than d(4), we have d(s, p) <
d(d(4), p), which implies that p lies in rCell(4). This implies that rCell(4) is connected
since the bottom side of 4 is contained in rCell(4). J

3 Computing the farthest-point geodesic Voronoi diagram restricted
to the boundary of the polygon

Using the algorithms in [2], we compute all apexed triangles satisfying the condition in
Lemma 3 in O(n) time. Recall that the apexed triangles which have the same definer are
interior disjoint and have their bottom sides on ∂P whose union forms a connected component
chain along ∂P . Moreover, their union is a funnel by Lemma 3. Thus, the apexed triangles
with the same definer can be sorted along ∂P .



6 FVD of points on the boundary of a simple polygon

I Lemma 5. Let s be a site in S and let τs 6= ∅ be the set of all apexed triangles with
definer s. We can sort the apexed triangles in τs along ∂P with respect to their bottom sides
in O(|τs|) time.

Proof. Recall that the bottom side of an apexed triangle is contained in ∂P , and the other
two sides are chords of P (possibly flush with ∂P ). Assume that these chords are oriented
from its apex to its bottom side. Using a hash-table storing the chords of the apexed triangles
in τs, we can link each of these chords to its neighboring triangles (and distinguish between
left and right neighbors). In this way, we can retrieve a linked list with all the triangles in τs
in sorted order along ∂P . J

3.1 Computing rFVD restricted to a transition edge
Let uv be a transition edge of P . Without loss of generality, we assume that uv is horizontal
and u lies to the left of v. Recall that if there is a site s with Cell(s) ∩ uv 6= φ, then s

lies in C[n(v),n(u)]. Thus, to compute rFVD ∩ uv, it is sufficient to consider the apexed
triangles with definers in C[n(v),n(u)]. Let A be the set of apexed triangles with definers in
C[n(v),n(u)].

In this section, we give a procedure to compute rFVD∩uv in O(|A|) time using the sorted
lists of the apexed triangles with definers in C[n(v),n(u)]. Once it is done for all transition
edges, we have the refined farthest-point geodesic Voronoi diagram restricted to ∂P . Let
s1 = n(u), s2, . . . , s` = n(v) be the sites lying on C[n(v),n(u)] in counterclockwise order
along ∂P .

3.1.1 An upper envelope and rFVD
Consider any t functions f1, . . . , ft with fj : D → R ∪ {−∞} for 1 ≤ j ≤ t, where D is any
point set. We define the upper envelope of f1, . . . , ft as the function f : D → R ∪ {−∞}
such that f(x) = max1≤j≤t fj(x). Moreover, we say that a function fj appears on the upper
envelope if fj(x) = f(x) ∈ R at some point x.

Recall that a site s has the set of apexed triangles sorted along uv with respect to their
bottom sides. Moreover, each such apexed triangle 4 has a distance function g4 such that
g4(x) = −∞ for a point x /∈ 4 and g4(x) = d(d(4), x) for a point x ∈ 4. In this subsection,
we restrict the domain of the distance functions to uv. By definition, the upper envelope
of g4 for all apexed triangles 4 ∈ A on uv coincides with rFVD ∩ uv in its projection on
uv. We consider the sites one by one in order and compute the upper envelope of g4 for all
apexed triangles 4 ∈ A on uv as follows.

While the upper envelope of g4 for all apexed triangles 4 ∈ A is continuous on uv, the
upper envelope of g4′ of all apexed triangles 4′ with definers from s1 up to sk on uv (we
simply say the upper envelope for sites from s1 to sk) might be discontinuous at some point
on uv for 1 ≤ k < `. Let w be the leftmost point where the upper envelope for sites from s1
to sk is discontinuous. Then we define U(sk) as the function such that U(sk)(x) is the value
of the upper envelope for sites from s1 to sk at x for a point x lying to the left of w, and
U(sk)(x) = −∞ for a point x lying to the right of w. By definition, U(n(v)) is the upper
envelope of the distance functions of all apexed triangles in A. Note that rCell(4) ∩ uv = φ

for some apexed triangle 4 ∈ A. Thus the distance function of an apexed triangle might
not appear on U(sk) on uv. Let τU (sk) be the list of the apexed triangles whose distance
functions appear on U(sk) sorted along uv from u with respect to their bottom sides. Note
that if d(4i) 6= d(4i+1), the bisector of d(4i) and d(4i+1) crosses the intersection of the
bottom sides of 4i and 4i+1 for two consecutive apexed triangles 4i and 4i+1 of τU (sk).
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3.1.2 A procedure for computing U(s`)
Suppose that we have already computed U(sk−1) and τU (sk−1) for some index 2 ≤ k ≤ `.
We show how to compute U(sk) and τU (sk) from U(sk−1) and τU (sk−1) in the following.
We use two auxiliary lists U ′ and τ ′U which are initially set to U(sk−1) and τU (sk−1). We
update U ′ and τ ′U until they finally become U(sk) and τU (sk), respectively.

Let τk be the list of the apexed triangles with definer sk sorted along ∂P with respect to
their bottom sides. For any apexed triangle 4, we denote the list of the apexed triangles
in τk overlapping with 4 in their bottom sides by τO(4). Also, we denote the lists of the
apexed triangles in τk \ τO(4) lying left to 4 and lying right to 4 with respect to their
bottom sides by τL(4) and τR(4), respectively.

Let 4a denote the last element (the rightmost apexed triangle) of τ ′U . With respect
to 4a, we partition τk into three disjoint sublists τL(4a), τO(4a) and τR(4a). We can
compute these sets in O(|τk|) time.

Case 1 : Some apexed triangles in τk overlap with 4a. If τO(4a) 6= φ, let 4 be the
leftmost apexed triangle in τO(4a). We compare the distance functions g4 and g4a

on
4a ∩4 ∩ uv. That is, we compare d(x, sk) and d(x,d(4a)) for x ∈ 4a ∩4 ∩ uv.

(1) If there is a point on 4a ∩4∩ uv that is equidistant from sk and d(4a), g4 appears
on U(sk). Moreover, the distance functions of the apexed triangles in τR(4) also appear on
U(sk), and no apexed triangle in τL(4) appears on U(sk) by Lemma 2. Thus we append 4
and the apexed triangles in τR(4) at the end of τ ′U . We also update U ′ accordingly. Then,
τ ′U and U ′ are τU (sk) and U(sk), respectively.

(2) If d(x,d(4a)) ≥ d(x, sk) for all points x ∈ 4a ∩ 4 ∩ uv, then 4 and its distance
function do not appear on τU (sk) and U(sk), respectively, by Lemma 2. Thus we do nothing
and scan the apexed triangles in τO(4a)∪ τR(4a), except 4, from left to right until we find
an apexed triangle 4′ such that there is a point on 4a ∩4′ ∩ uv which is equidistant from
d(4a) and sk. Then we apply the procedure in (1) with 4′ instead of 4. If there is no such
apexed triangle, we have U(sk) = U ′ and τU (sk) = τ ′U .

(3) Otherwise, we have d(x, sk) ≥ d(x,d(4a)) for all points x ∈ 4a ∩4 ∩ uv. Then the
distance function of 4a does not appear on U(sk). Thus, we remove 4a and its distance
function from τ ′U and U ′, respectively. We consider the apexed triangles in τL(4a) from right
to left. For an apexed triangle 4′ ∈ τL(4a), we do the following. Since τ ′U is updated, we
update 4a to the last element of τ ′U . Afterwards, we check whether d(x, sk) ≥ d(x,d(4a))
for all points x ∈ 4a ∩4′ ∩ uv if 4′ overlaps 4a. If so, we remove 4a from τ ′U and update
4a. We do this until we find an apexed triangle 4′ ∈ τL(4a) such that this test fails. Then,
there is a point on 4′ ∩4a ∩ uv which is equidistant from d(4a) and sk. After we reach
such an apexed triangle 4′, we apply the procedure in (1) with 4′ instead of 4.

Case 2 : No apexed triangle in τk overlaps with 4a. If τO(4a) = φ, we cannot compare
the distance function of any apexed triangle in τk with the distance function of 4a directly,
so we need a different method to handle this.

There are two possible subcases: either τL(4a) = φ or τR(4a) = φ. Note that these are
the only possible subcases since the union of the apexed triangles with the same definer is
connected. For the former subcase, the upper envelope of sites from s1 to sk is discontinuous
at the right endpoint of the bottom side of 4a. Thus g4 does not appear on U(sk) for any
apexed triangle 4 ∈ τk. Thus U(sk) = U ′ and τU (sk) = τ ′U .

For the latter subcase, at most one of sk and d(4a) has its Voronoi cell in FVD[Sk],
where Sk = {s1, . . . , sk}, by Lemma 2. In this case, we can find a site (sk or d(4a)) which
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does not have its Voronoi cell in FVD[Sk] in constant time once we maintain π(s, x1), π(s, x2)
and their geodesic distances during the whole procedure (for all cases), where s is the site we
are considering, which changes from s1 to s`, and x1, x2 are the left and the right endpoints
of the bottom side of the last apexed triangle 4a on τ ′U . We describe this procedure at the
end of this subsection.

If sk does not have its Voronoi cell in FVD[Sk], then U(sk) = U ′ and τU (sk) = τ ′U . If
d(4a) does not have its Voronoi cell in FVD[Sk], we remove all apexed triangles with definer
d(4a) from τ ′U and their distance functions from U ′. Since such apexed triangles lie at the
end of τ ′U consecutively, it takes the time proportional to the number of the apexed triangles.
Afterwards, we do this until the last element of τk and the last element of τ ′U overlap in their
bottom sides. When the two elements overlap, we apply the procedure of Case 1.

In total, the running time is bounded by O(|A|).

Subcase of Case 2 : τO(4a) = φ and τR(4a) = φ. To handle this subcase, we maintain
π(s, x1), π(s, x2) and their geodesic distances during the whole procedure (for all cases),
where s is the site we are considering, which changes from s1 to s`, and x1, x2 are the left
and the right endpoints of the bottom side of the last apexed triangle 4a on τ ′U . Note that
the three points s, x1, x2 and the apexed triangle 4a change while the procedure is executed.
Whenever they change, we update π(s, x1) and π(s, x2) using the previous geodesic paths.
Then, we can compare d(sk, x) and d(d(4a), x) for x ∈ 4a ∩ uv in constant time for this
subcase, thus we can decide whether sk or d(4a) does not have its Voronoi cell in FVD[Sk]
in constant time.

We will show that updating the geodesic paths takes O(|A|) time in total. We show
this for π(s, x2) first. Let Huv denote the region bounded by uv, π(v,n(u)), C[n(v),n(u)]
and π(n(v), u), which is called an hourglass of uv in [2]. The total complexity of He for all
transition edges e is O(n) and they can be computed in O(n) time as shown in [2]. Moreover,
they show that the complexity of Huv is bounded by O(|A|). Thus the shortest path trees
rooted at u and v in Huv can be computed in O(|A|) time and the total complexity of the
shortest path trees is O(|A|) [8]. This is done only once during the whole procedure.

Once the shortest path trees rooted at u and v are computed, the update time is bounded
by the number of edges added to or removed from the previous geodesic path. Note that the
edges in π(s, x2), except the edge adjacent to x2, are also edges of the shortest path trees.
In the following, we show that each edge of the shortest path trees is removed from π(sk, x)
at most O(1) times while we update π(s, x2), which implies that the update time is O(|A|)
time in total.

We already have π(sk, x2) and we are to compute π(s′k, x′2). There are three different
cases; (1) s′k = sk and x′2 lies to the right of x2, (2) s′k = sk and x′2 lies to the left of x2
(x′2 = x1), and (3) s′k = sk+1 and x′2 = x2.

The first case occurs only when we add a new apexed triangle into τ ′U . Moreover, when
we add one new apexed triangle into τ ′U , at most one edge of π(sk, x2) is removed since the
definer of the new apexed triangle is sk = s′k. Thus, the number of deletions of the edges in
π(s, x2) corresponding to the first case is bounded by O(|A|).

The second case occurs only when we remove the last apexed triangle 4a in τ ′U . It is
possible that we have to remove more than one edges from π(sk, x2) when one apexed triangle
is removed. See Figure 1(a). Assume that we have to remove more than one edges when
4a is removed. Then x′2 and x2 are the left and the right endpoints of the bottom side of
4a, respectively. Let w1w2 be an edge in π(sk, x2) which is not adjacent to x2 and is not
in π(sk, x′2). Let w′1 and w′2 be the two points on ∂P hit by the rays from w1w2 towards
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u v

sk

x2x′2 = x1 w′
1

w′
2

u vx

sk

sk+1

w2

w1

w

(a) (b)

4a

a(4a)

Figure 1 (a) When the gray apexed triangle is removed from τ ′U , we remove two edges (other
than w1x2) from π(sk, x2) to obtain π(sk, x

′
2). After the gray apexed triangle is removed, no apexed

triangle whose bottom side lies in x′2v has its apex on C[w2, v]. Thus the red thick line segment is
not removed anymore. (b) The red thick line segment appears on π(s, x2) for some x2 ∈ uv only if
s ∈ C[w, v]. Therefore, the red line does not appear on π(sj , x2) for any x2 ∈ uv and any j ≥ k + 1.

w1 and w2, respectively. Since w′1 ∈ x′2x2, a(4a) lies in C[w1, v] by the construction of the
apexed triangles and the fact that the definers of apexed triangles in τ ′U lie in C[sk,n(u)].
Note that once 4a is removed from τ ′U , no apexed triangle with apex in C[w1, v] is added
to τ ′U again. This implies that w1w2 does not appear on π(s, x2) again in the remaining
procedure for computing the upper envelope on uv. Thus, the number of deletions of the
edges in π(s, x2) corresponding to the second case is also O(|A|).

For the last case, s′k = sk+1 lies after sk from s1. It occurs when we finish the procedure
for handling sk. Once we consider the site s′k, we do not consider any site from s1 to sk
again. Consider an edge e removed from π(sk, x2) due to the last case. Let w be the point
on sksk+1 crossed by the extension of e. See Figure 1(b). If π(s, x2) contains e for some
s ∈ C[n(v),n(u)] and some x2 ∈ uv, we have s ∈ C[w, v]. This means that once e is removed
due to the last case, e does not appear on the geodesic path π(s, x2) again in the remaining
procedure. Thus, the number of deletions of the edges in π(s, x2) corresponding to the last
case is also O(|A|).

The geodesic distance π(s, x1) can be computed analogously. For the third case, we can
show this for π(s, x1) as a similar way for π(s, x2). The number of deletions of the edges
in π(s, x1) corresponding to the first and the second cases is bounded by the number of
deletions of the edges in π(s, x2), which is O(|A|).

I Theorem 6. The farthest-point geodesic Voronoi diagram of the vertices of a simple n-gon
P restricted to the boundary of P can be computed in O(n) time.

4 Decomposing the polygon into smaller cells

Until now, we have computed rFVD ∩ ∂P of size O(n). We add the points in rFVD ∩ ∂P to
the vertex set of P , and apply the algorithm to compute the apexed triangles with respect
to the vertex set of P again [2]. Note that now there is no transition edge. Thus all apexed
triangles are disjoint in their bottom sides. We have the set of the apexed triangles sorted
along ∂P with respect to their bottom sides.

A subset A of P is geodesically convex if π(x, y) ⊆ A for any x, y ∈ A. A vertex v of a
simple polygon is convex (or reflex) if the angle at v is at most (or at least) π. We define a
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t-path-cell for some t ∈ N as a simple polygon contained in P with all vertices on ∂P which
is geodesically convex and contains at most t convex vertices.

In the following, for a cell C, |∂C| denotes the number of edges of C. For a curve γ,
|rFVD ∩ γ| denotes the number of the refined cells intersecting γ.

Sketch of the algorithm We subdivide P into t-path-cells recursively for some t ∈ N
until each cell becomes a base cell. There are three types of base cells. The first type is
a quadrilateral crossed by exactly one arc of rFVD through two opposite sides, which we
call an arc-quadrilateral. The second type is a 3-path-cell. Note that a 3-path-cell is a
pseudo-triangle. The third type is a region of P whose boundary consists of one convex chain
and one concave chain, which we call a lune-cell. Note that a convex polygon is a lune-cell
whose concave chain is just a vertex of the polygon.

Let {tk} be the sequence such that t1 = n and tk = b
√
tk−1c + 1. Initially, P itself

is a t1-path-cell. Assume that the kth iteration is completed. We show how to subdivide
each tk-path-cell with tk > 3 into tk+1-path-cells and base cells in the (k + 1)th iteration in
Section 4.1. Note that a base cell is not subdivided further.

While subdividing the polygon into cells, we compute the refined farthest-point geodesic
Voronoi diagram restricted to the boundary of each cell C (of any kind) in time linear on
|∂C| and |rFVD ∩ ∂C|. In Section 5, we show how to compute the refined farthest-point
geodesic Voronoi diagram restricted to a base cell T in O(|rFVD∩ ∂T |) time once rFVD∩ ∂T
is computed.

Properties and analysis Note that tk ≤ 3 with k = c log logn for some constant 1 < c ∈ R.1
Moreover, in the kth iteration, P is subdivided into tk-path-cells and base cells. Thus, in
O(log logn) iterations, every t-path-cell gets subdivided into base cells.

We will show that each iteration takes O(n) time in Section 4.1, which implies that the
overall running time for the computation in this section is O(n log logn). After the last
iteration of the subdivision, there are O(n log logn) base cells. See Corollary 14. Moreover,
an arc of rFVD intersects O(1) t-path-cells, arc-quadrilaterals, and lune-cells created in the
same iteration. See the proof of Lemma 12. With these facts, we will show that the total
complexity of the refined farthest-point geodesic Voronoi diagram restricted to the boundaries
of all cells in the kth iteration is O(kn) for any k ∈ N. See Lemma 13.

4.1 Subdividing a t-path-cell into smaller cells

In this section, we subdivide each tk-path-cell into tk+1-path-cells and base cells. If a tk-
path-cell C is a pseudo-triangle or a lune-cell, C is a base cell and we do not subdivide it
further. Otherwise, we subdivide it using the algorithm in this section.

The subdivision consists of three phases. In the first phase, we subdivide each tk-path-cell
into tk+1-path-cells by a curve connecting at most tk+1 vertices of the tk-path-cell. In the
second phase, we subdivide each tk+1-path-cell further along an arc of rFVD crossing the cell
if there is such an arc. In the last phase, we subdivide cells created in the second phase into
tk+1-path-cells and lune-cells.

1 tk ≤ 2
√
tk−1 ≤ 2

√
2
√
tk−2 ≤ . . . ≤ 21+1/2+1/4+...+(1/2)k

n(1/2)k

≤ 22n(1/2)c log log n

≤ O(n(log n)1/c

) ≤
O(nlog n) ≤ O(1) for k = c log logn.



E. Oh, L. Barba and H.-K. Ahn 11

rCell(41)

γ

w3

w1

(a) (b) (c)

C1

C2

C3

γ

C1
C2

C3
γ

w0

w2

C1C2

C3

rCell(41)

α

α

rCell(42)

rCell(42)
e

Figure 2 (a) The region bounded by the black curve is a 16-path-cell. All convex vertices
are marked with black disks. The region is subdivided into six 5-path-cells by the red thick
curve consisting of π(w0, w1), π(w1, w2), π(w2, w3) and π(w3, w0). (b) The arc α of rFVD intersects
C1, C2, C3 and crosses C2. (c) The arc α of rFVD intersects C1, C2, C3 and crosses C2. Note that α
does not cross C3.

4.1.1 Phase 1. Subdivision by a curve connecting at most tk+1 vertices

Let C be a tk-path-cell computed in the kth iteration. Recall that C consists of at most tk
convex vertices on its boundary and is simple. Let β be the largest integer satisfying that
βb
√
tkc is less than the number of the convex vertices of C. Then we have β ≤ b

√
tkc+ 1 =

tk+1.

We choose β + 1 vertices w0, w1, . . . , wβ from the convex vertices of C as follows. We
choose an arbitrary convex vertex of C and denote it by w0. Then we choose the jb

√
tkcth

convex vertex of C from w0 in clockwise order and denote it by wj for all j = 1, . . . , β. We
set wβ+1 = w0. Then we construct the closed curve γC (or simply γ when C is clear from
context) consisting of the geodesic paths π(w0, w1), π(w1, w2), . . . , (wβ , w0). See Figure 2(a).
In other words, the closed curve γC is the boundary of the geodesic convex hull of w0, . . . , wβ .
Note that γ is simple, that is, it does not cross itself. Moreover, γ is contained in C since C
is geodesically convex.

We compute γ in time linear to the number of edges of C as follows. The algorithm
computing geodesic paths in [11] takes k source-destination pairs as input, where both sources
and destinations are on the boundary of a simple polygon. It returns the geodesic path
between the source and the destination for each input pair. For all pairs, computing the
geodesic paths takes O(N + k) time in total if k shortest paths do not cross (but possibly
overlap) one another, where N is the complexity of the polygon. In our case, the pairs
(wj , wj+1) for j = 0, . . . , β are β + 1 input source-destination pairs. Since the geodesic paths
for all input pairs do not cross one another, γ can be computed in O(β + |∂C|) = O(|∂C|)
time. Then we compute rFVD∩ γ in O(|rFVD∩ ∂C|+ |∂C|) time using rFVD∩ ∂C which has
already been computed in the kth iteration. We will describe this procedure in Section 4.2.

The curve γ subdivides C into tk+1-path-cells. The set C \ γ consists of at least β + 2
connected components. Note that the closure of each connected component is a tk+1-path-cell.
Moreover, the union of the closures of all connected components is exactly C since C is
simple. These components define the subdivision of C induced by γ.
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Cj
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b2

b1

e1

e2

x

rCell(4)

Figure 3 rCell(4)∩ ∂Cj consists of five connected components (line segments) ai contained in e1

and bj contained in e2 for i = 1, 2, 3 and j = 1, 2.

4.1.2 Phase 2. Subdivision along an arc of rFVD
After subdividing C into tk+1-path-cells C1, . . . , Cδ (δ ≥ β + 2) by the curve γC , an arc α of
rFVD may cross Cj for some 1 ≤ j ≤ δ. In the second phase, for each arc α crossing Cj , we
isolate the subarc α ∩ Cj from Cj by creating a new cell which we call an arc-quadrilateral.
For an arc-quadrilateral � created by an arc α, we have rFVD ∩� = α ∩ Cj .

I Lemma 7. For a geodesically convex polygon C with t convex vertices (t ∈ N), let γ̃ be
a simple closed curve connecting t′ ≤ t convex vertices of C lying on ∂P such that two
consecutive vertices in clockwise order are connected by a geodesic path. Then, for each arc
α of rFVD with α ∩ C 6= φ, α intersects at most three cells in the subdivision of C by γ̃.

Proof. Consider an arc α of rFVD with α ∩ C 6= φ. The arc α is part of either the bisector
of two sites or a side of some apexed triangle.

For the first case, α is part of a hyperbola. Let s1 and s2 be the two sites equidistant from
any point in α. The combinatorial structure of the geodesic path from s1 (or s2) to any point
in α is the same. This means that α is contained in the intersection of two apexed triangles
41,42, one with definer s1 and the other with definer s2. Note that 41 ∩42 intersects γ̃
at most twice and contains no vertex of γ̃ in its interior. Thus, 41 ∩42 intersects at most
two edges e1, e2 of γ̃, and so does α. For a cell C ′ in the subdivision of C by γ̃, α intersects
C ′ if and only if C ′ contains e1 or e2 on its boundary.

Thus there exist at most three such cells in the subdivision of C by γ̃ and the lemma
holds for the first case. See Figure 2(b)(c). For the second case, the arc α is a line segment.
Thus α intersects at most three cells in the subdivision of C by γ̃. J

Since C is geodesically convex, α intersects at most two edges of a cell C in the first
phase, which can be proved in a way similar to the proof of Lemma 7. We say an arc α of
rFVD crosses a cell C ′ if exactly two edges of C ′ intersect α. For example, in Figure 2(c), α
crosses C2 while α does not cross C3 because there is only one edge of C3 intersecting α.

Consider rCell(4) ∩ ∂Cj for an apexed triangle 4. It is possible that rCell(4) ∩ ∂Cj
consists of more than one connected components. See Figure 3. Each connected component
of rCell(4) ∩ ∂Cj is a line segment.

First, we find an arc α of rFVD that crosses Cj . Since the points in rFVD ∩ ∂Cj along
∂Cj have already been computed, we can scan them in clockwise order. For all arcs, it can
be done in O(|rFVD ∩ Cj |) time by the following two lemmas.

I Lemma 8. There is an arc α of rFVD crossing Cj if and only if there are two distinct apexed
triangles 41 and 42, and two connected components (line segments) of rCell(41)∩ ∂Cj such
that each of the connected components is adjacent to a connected component (line segment)
of rCell(42) ∩ ∂Cj.
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Figure 4 (a) The arc α of rFVD crosses Cj , thus we isolate this by creating the arc-quadrilateral
bounded by `1, `2 and ∂Cj . (b) The vertices marked with empty disks lie on ∂P while the other
vertices lie in int(P ). We subdivide the cell into one t-path-cell CH and four lune-cells P1, . . . , P4.

Proof. Let α be an arc of rFVD. Then there are two apexed triangles 41 and 42 such that
rCell(41) and rCell(42) share their boundary on α. If α crosses Cj , α∩ ∂Cj contains at least
two points where a connected component rCell(41) ∩ ∂Cj meets a connected component of
rCell(42) ∩ ∂Cj . See Figure 4(a).

Let (41,42) be a pair of apexed triangles satisfying the condition in the lemma and x, y
be two points where a connected component rCell(41) ∩ ∂Cj meets a connected component
of rCell(42) ∩ ∂Cj . Since both rCell(41) and rCell(42) are connected, there is a common
boundary of them between x and y. Note that for any point p on the common boundary, we
have g41(p) = g42(p) > 0 by definition. The common boundary is a hyperbolic arc which
crosses Cj . J

I Lemma 9. All arcs α of rFVD crossing Cj can be found in O(|rFVD∩∂Cj |) time. Moreover,
the pair (41,42) of apexed triangles corresponding to each α such that α ∩ Cj = {x ∈ Cj :
g41(x) = g42(x) > 0} can be found in the same time.

Proof. For each apexed triangle 4, we find all connected components of rCell(4) ∩ ∂Cj . It
can be done in O(|rFVD ∩ Cj |) time for all apexed triangles. Since int(4) intersects ∂Cj at
most twice and contains no vertex of Cj , at most two edges e1, e2 of ∂Cj contain all connected
components of rCell(4) ∩ ∂Cj . See Figure 3. Without loss of generality, we assume that e1
contains the point x ∈ rCell(4) ∩ ∂Cj closest to a(4). We insert all connected components
of rCell(4) ∩ e1 in the clockwise order along ∂Cj into a queue. Afterwards, we consider the
connected components of rCell(4) ∩ e2 in the clockwise order along ∂Cj one by one.

To handle a connected component r of rCell(4) ∩ e2, we do the following. Let x be a
point in the first element r′ of the queue. If the line passing through x and a(4) intersects
r, then we remove r′ from the queue and check whether r and r′ are incident to the same
refined cell rCell(4′). If so, we compute an arc corresponding to 4 and 4′ and return the
arc and the pair (4,4′). We repeat this until the line passing through a point of the first
element of the queue does not intersect r. Then, we handle the connected component of
rCell(4) ∩ e2 next to r.

For each arc α crossing Cj , there are the two connected components r, r′ of rFVD(4)∩Cj
incident to α. Without loss of generality, we assume that r contains the point in r ∪ r′
closest to a(4). Since α∪ r is a connected curve, the set of the points where the line passing
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through some point x ∈ α ∪ r and a(4) intersects ∂Cj is connected. Moreover, the set is
contained in rCell(4) by Lemma 4. Since r′ is contained in the set, the line passing through
a point in r and a(4) intersects r′. Thus, the procedure finds α. J

Note that α ∩ Cj consists of at most two connected components. For the case that it
consists exactly two connected components, we consider each connected component separately.
Thus we show the case that α ∩ Cj is connected.

For an arc α crossing Cj , we subdivide Cj further into two cells with t′ convex vertices
for t′ ≤ tk+1 and one arc-quadrilateral by adding two line segments bounding α such that
no arc other than α intersects the arc-quadrilateral. Let (41,42) be the pair of apexed
triangles corresponding to α. Let a1, b1 (and a2, b2) be the two connected components of
rCell(41) ∩ ∂Cj (and rCell(42) ∩ ∂Cj) incident to α such that a1, a2 are adjacent to each
other and b1, b2 are adjacent to each other. See Figure 4(a).

Without loss of generality, we assume that a1 is closer than b1 to a(41). Let x be any
point on a1. Then the farthest neighbor of x is the definer of 41. We consider the line `1
passing through x and the apex of 41. Then the intersection between Cj and `1 is contained
in the closure of rCell(41) by Lemma 4. Similarly, we find the line `2 passing through the
apex of 42 and a point on a2.

We subdivide Cj into two cells with at most tk+1 convex vertices and one arc-quadrilateral
by two lines `1 and `2. The quadrilateral bounded by the two lines and ∂Cj is an arc-
quadrilateral since α crosses the quadrilateral but no other arcs of rFVD intersect the
quadrilateral.

We do this for all arcs crossing some Cj . Note that no arc crosses the resulting cells
other than arc-quadrilaterals by the construction. Then the resulting cells with at most tk+1
convex vertices and arc-quadrilaterals are the cells in the subdivision of C in the second
phase.

I Lemma 10. No arc of rFVD crosses cells other than arc-quadrilaterals created in the
second phase of the subdivision.

4.1.3 Phase 3. Subdivision by a geodesic convex hull
Note that some cell C ′ with t′ convex vertices for 3 < t′ ≤ tk+1 created in the second phase
might be neither a t′-path-cell nor a base cell since some vertices of the cell might be in
int(P ). In the third phase, we subdivide such cells further into t′-path-cells and base cells.

To subdivide C ′ into tk+1-path-cells and base cells, we first compute the geodesic convex
hull CH of the vertices of C ′ lying on ∂P in time linear to the number of edges in C ′ using the
algorithm for computing k-pair shortest paths in [11]. Consider the connected components of
C ′ \ ∂CH. There are two types of the connected components. A connected component of the
first type is enclosed by a closed simple curve which is part of ∂CH. For example, C1 and C2
in Figure 4(b) are the connected components belonging to this type. A connected component
of the second type is enclosed by a subchain of ∂CH from u to w in clockwise order and a
subchain of ∂C ′ from w to u in counterclockwise order for some u,w ∈ ∂P . For example, Pi
in Figure 4(b) is the connected component belonging to the second type for i = 1, . . . , 4.

By the construction, a connected component belonging to the first type has all its vertices
on ∂P . Moreover, it has at most t′ convex vertices since C ′ has t′ convex vertices. Therefore,
the closure of a connected component of C ′ \ ∂CH belonging to the first type is a t′-path-cell.

Every vertex of C ′ lying in int(P ) is convex with respect to C ′ by the construction of C ′.
Thus, for a connected component P ′ belonging to the second type, the part of ∂P ′ from ∂C ′

is a convex chain with respect to P ′. Moreover, the part of ∂P ′ from ∂CH is the geodesic
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path between two points, thus it is a concave chain with respect to P ′. Therefore, the closure
of a connected component belonging to the second type is a lune-cell.

Since C ′ is a simple polygon, the union of the closures of all connected components of
C ′ \ CH is exactly C ′. The closures of all connected components belonging to the first and
the second types are tk+1-path-cells and lune-cells created in the last phase of the (k + 1)th
iteration, respectively. We compute the tk+1-path-cells and the lune-cells subdivided by ∂CH.
Then, we compute rFVD ∩ ∂CH using the procedure in Section 4.2.

The resulting tk+1-path-cells and base cells are the final decomposition of C of the
(k + 1)th iteration.

4.1.4 Analysis of the complexity
We first bound the complexity of the refined farthest-point geodesic Voronoi diagram restricted
to the boundary of the cells in each iteration. The two following technical lemmas are used
to bound the complexity.

I Lemma 11. Let 41,42 be two apexed triangles such that rCell(41) and rCell(42) share
an arc α of rFVD on their boundaries. Then any two line segments tangent to α whose
endpoints lie outside of 41 ∪42 intersect at some point other than their endpoints.

Proof. If α is a line segment, then it is part of the common boundary of 41 and 42. Thus,
the lemma holds. Now, we consider the case that α is hyperbolic.

Without loss of generality, we assume that the line containing a(41) and a(42) is the
x-axis. Note that α is part of a hyperbola whose foci lie on the x-axis. Moreover, α does
not intersect the x-axis. Let h1 and h2 be the lines tangent to α at the endpoints of α.
We denote the region bounded by h1, h2 and α by R. Then it suffices to show that R is
contained in 41 ∩42.

Assume to the contrary that R is not contained in 41 ∩42. If R is not contained in 41,
then one of the sides of 41 incident to a(41) intersects R. Thus, there is a line passing
through a(41) which intersects α twice, which is a contradiction by Lemma 4. The case
that R is not contained in 42 is analogous. J

I Lemma 12. An arc α of rFVD intersects at most nine tk-path-cells and O(k) base cells at
the end of the kth iteration. Moreover, there are at most three tk-path-cells that α intersects
but does not cross at the end of the kth iteration.

Proof. Let α be an arc of rFVD. By Lemma 11, there is at most one tk-path-cell at the end
of the kth iteration that α intersects but does not cross and no endpoint of α is contained in.
Therefore, there are at most three tk-path-cells that α intersects but does not cross at the
end of the kth iteration.

Now, we show that α intersects at most nine tk-path-cells and O(k) base cells at the end
of the kth iteration. For k = 1, P itself is the decomposition of P , thus there exists only one
cell.

For k ≥ 2, assume that the lemma holds for the k′th iterations for all k′ ≤ k. Thus
α intersects at most nine tk-path-cells at the end of the kth iteration by the assumption.
Therefore, at the end of the first phase of the (k + 1)th iteration, α crosses at most 27
tk+1-path-cells by Lemma 7. Note that α ∩ C ′ might consist of two connected components
for a tk+1-path-cell C ′ created in the first phase. See Figure 2(c). In this case, we create two
arc-quadrilaterals. If α ∩ C ′ is connected, we create one arc-quadrilateral. Thus, we create
at most 54 arc-quadrilaterals crossed by α in the second phase.
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Recall that there are at most three tk-path-cells that α intersects but does not cross at
the end of the kth iteration. Let C1, C2, and C3 be such tk-path-cells. Note that if α crosses
a tk-path-cell Ĉ, α crosses all tk+1-path-cells in the subdivision of Ĉ of the first phase which
α intersects. Then the algorithm constructs an arc-quadrilateral and isolates part of α from
the remaining cells in the subdivision of Ĉ in the second phase. Thus it suffices to consider
only C1, C2, C3 to bound the number of tk+1-path-cells and base cells that α intersects at
the end of the (k + 1)th iteration.

Recall that Ci is subdivided into tk+1-path-cells and base cells by the geodesic convex
hull CH of the vertices of Ci lying on ∂P for i = 1, 2, 3. By Lemma 7, α intersects at most
three (any kinds of) cells in the subdivision of Ci in the last phase of the (k + 1)th iteration.
Thus, α intersects at most nine lune-cells and at most nine tk+1-path-cells.

Thus, α intersects at most O(1) base cells and nine tk+1-path-cells at the end of the
(k + 1)th iteration, which implies the lemma. J

Now we are ready to bound the complexities of the cells and rFVD restricted to the cells
in each iteration. Then we finally prove that the running time of the algorithm in this section
is O(n log logn).

I Lemma 13. At the end of the kth iteration, the following holds.∑
C:a tk-path-cell |rFVD ∩ ∂C| = O(n).∑
C:a tk-path-cell |∂C| = O(n).∑
T :a base cell |rFVD ∩ ∂T | = O(kn).∑
T :a base cell |∂T | = O(kn).

Proof. Let α be an arc of rFVD. The first and the third complexity bounds hold by Lemma 12
and the fact that the number of the arcs of rFVD is O(n).

The second complexity bound holds since the set of all edges of the tk-path-cells is a
subset of the chords in some triangulation of P . Note that any triangulation of P has O(n)
chords. Moreover, each chord is incident to at most two tk-path-cells.

For the last complexity bound, the number of edges of base cells whose endpoints are
vertices of P is O(n) since they are chords in some triangulation of P . Thus we count the
edges of base cells which are not incident to a vertex of P . In the first phase, such an edge is
not created. In the second phase, we create at most O(1) such edges whenever we create one
arc-quadrilateral. All edges created in the last phase have their endpoints on ∂P . Therefore,
the total number of the edges of all base cells is asymptotically bounded by the number of
arc-quadrilaterals, which is O(kn). J

I Corollary 14. In O(log logn) iterations, the polygon is subdivided into O(n log logn) base
cells.

I Lemma 15. The subdivision in each iteration can be done in O(n) time.

Proof. In the first phase, we compute γC and rFVD ∩ γC for each t-path-cell C from the
previous iteration. The running time for this is linear to the total complexity of all t-path-cells
in the previous iteration and rFVD restricted on the boundary of all t-path-cells, which is
O(n) by Lemma 13.

In the second phase, we first scan rFVD ∩ C ′ for all cells C ′ from the first phase to find
an arc crossing some cell. This can also be done in linear time by Lemma 9 and Lemma 13.
For each arc crossing some t-path-cell, we compute two line segments bounding the arc and
subdivide the cell into two smaller regions and one arc-quadrilateral in O(1) time. Each arc
crosses at most O(1) cells from the first phase, and the time for this step is O(n) in total.
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Figure 5 (a) The apexed triangles with their bottom sides in C[`a, rb] and C[`b, ra] are contained
in Lab and Lba, respectively. (b) The hyperbolic arcs are the distance functions associated with
the apexed triangles in Lab. The set of red curves (1, 2, and 5) represent a partial upper envelope
of all distance functions. Note that 3 and 4 do not appear on the complete upper envelope which
coincides with rFVD. Thus, we do not need to consider them.

In the last phase, we further subdivide each cell which is not a base cell from the second
phase. In the subdivision of a cell which is not a base cell C in the second phase, we first
compute the geodesic convex hull CH of the vertices of C ′ lying on ∂P . The geodesic convex
hull can be computed in time linear to the complexity of C ′. By Lemma 18, rFVD∩ ∂CH can
be computed in O(|rFVD ∩ ∂C ′|+ |∂C ′|) time. Note that all cells other than base cells from
the second phase are interior disjoint. Moreover, the total number of the edges of such cells is
O(n). Similarly, the total complexity of rFVD ∩ ∂C ′ for all such cells C ′ is O(n). Therefore,
the t-path-cells and lune-cells can be computed in O(n) time. J

4.2 Computing rFVD restricted to the boundary of a t-path-cell
Remind that the bottom sides of all apexed triangles are interior-disjoint. Moreover, the
union of them is ∂P by the construction. In this section, we describe a procedure to compute
rFVD∩γC in O(|rFVD∩∂C|+ |∂C|) time once rFVD∩∂C is computed. Recall that γC is the
closed curve connecting consecutive points of every tk+1th convex vertices of C in clockwise
order.

If rCell(4) ∩ γ 6= φ for an apexed triangle 4, then we have rCell(4) ∩ ∂C 6= φ. Thus,
we consider only the apexed triangles 4 with rCell(4) ∩ ∂C 6= φ. Let L be the list of
all such apexed triangles sorted along ∂P with respect to their bottom sides. Note that
|L| = O(|rFVD ∩ ∂C|).

Consider a line segment ab contained in P . Without loss of generality, we assume that
ab is horizontal and a lies to the left of b. Let 4a and 4b be the apexed triangles which
maximize g4a(a) and g4b

(b), respectively. If there is a tie by more than one apexed triangles,
we choose an arbitrary one of them. With the two apexed triangles, we define two sorted
lists Lab and Lba. Let Lab be the sorted list of the apexed triangles in L which intersect
ab and whose bottom sides lie from the bottom side of 4a to the bottom side of 4b in
clockwise order along ∂P . Similarly, let Lba be the sorted list of the apexed triangles in L
which intersect ab and whose bottom sides lie from the bottom side of 4b to the bottom
side of 4a in clockwise order along ∂P . See Figure 5(a).

The following lemma together with Section 4.2.1 gives a procedure to compute rFVD∩ ab.

I Lemma 16. Let C be a geodesically convex polygon and a, b be two points with ab ⊂ C.
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Given the two sorted lists Lab and Lba, rFVD ∩ ab can be computed in O(|Lab|+ |Lba|) time.

Proof. Recall that the upper envelope of g4 for all apexed triangles 4 ∈ Lab ∪ Lba (simply,
the upper envelope for Lab∪Lba) coincides with rFVD∩ab in its projection on ab by definition.
Thus we compute the upper envelope for Lab ∪ Lba. To this end, we compute a “partial”
upper envelope of g4 on ab for all apexed triangles 4 ∈ Lab. After we do this for the apexed
triangles in Lba, we merge the two “partial” upper envelopes on ab to obtain the complete
upper envelope of g4 on ab for all apexed triangles 4 ∈ Lab ∪ Lba.

A partial upper envelope for Lab is the upper envelope for A ⊂ Lab satisfying that 4 ∈ Lab
belongs to A if rCell(4) ∩ ab 6= φ. See Figure 5(b). Thus the upper envelope of two partial
upper envelopes, one for Lab and one for Lba, is the complete upper envelope for Lab ∪ Lba.
Note that a partial upper envelope for Lab (and Lba) is not necessarily unique.

In the following, we show how to compute one of the partial upper envelopes for Lab. A
partial upper envelope for Lba can be computed analogously. The complete upper envelope
can be constructed in O(|Lab|+ |Lba|) time by scanning the two partial upper envelopes.

For any two apexed triangles 41,42 ∈ Lab such that the bottom side of 41 comes before
the bottom side of 42 from the bottom side of 4a in clockwise order along ∂P , rCell(41)∩ab
comes before rCell(42) ∩ ab from a if they exist. Otherwise, there is a point contained
in rCell(41) ∩ rCell(42) by Lemma 4, which contradicts that all refined cells are pairwise
disjoint. With this property, a partial upper envelope for Lab can be constructed in a way
similar to the procedure for computing rFVD ∩ ∂P in Section 3.1. The difficulty here is that
we must avoid maintaining geodesic paths as it takes O(n) time, which is too much for our
purpose.

We consider the apexed triangles in Lab from 4a to 4b one by one as follows. Let U be
the current partial upper envelope of the distance functions of apexed triangles from 4a to
4′ of Lab and τ be the list of the apexed triangles whose distance functions restricted to
ab appear on U in the order in which they appear on U . We show how to update U to a
partial upper envelope of the distance functions of apexed triangles from 4a to 4, where 4
is the apexed triangle next to 4′ in Lab. Let 4r be the last element in τ and µ be the line
segment contained in ab such that g4r (x) = U(x) > 0 for every point x ∈ µ.

There are three possibilities: (1) 4 ∩ µ 6= φ. In this case, we compare the distance
functions of 4 and 4r on 4∩ µ. Depending on the result, we update U and τ as we did
in Section 3.1. (2) 4∩ µ = φ and 4∩ ab lies to the right of µ. We append 4 to τ at the
end and update U accordingly. (3) 4∩ µ = φ and 4∩ ab lies to the left of µ. We have to
use a method different from the one in Section 3.1 to handle this case. Here, contrast to
the case in Section 3.1, 4r intersects 4. Thus, we can check whether rCell(4) ∩ ab = φ or
rCell(4r) ∩ ab = φ easily as follows. Consider the set R = 4∩4r. The distance functions
associated with 4 and 4r have positive values on R, thus we can compare the geodesic
distances from d(4) and d(4r) to a point in R. Depending on the result, we can check in
constant time whether rCell(4) and rCell(4r) intersect the connected regions 4 \ R and
4r \R containing a(4) and a(4r), respectively. If rCell(4) does not intersect the connected
region 4 \ R containing a(4), then rCell(4r) does not intersect ab. This also holds for
rCell(4r). Depending on the result, we apply the procedure in Section 3.1.

Recall that we do not append an apexed triangle 4 to τ only if rCell(4) ∩ ab = φ.
Similarly, we remove some apexed triangle 4 from τ only if rCell(4) ∩ ab = φ. Thus, by
definition, U is a partial upper envelope of the distance functions for Lab.

As we mention above, we do this also for Lba. Then we compute the upper envelope of
the two resulting partial upper envelopes, which is the complete upper envelope for Lab ∪Lba.
This takes O(|Lab|+ |Lba|) time. J
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I Corollary 17. Let C be a geodesically convex polygon and E be a set of line segments
which are contained in C with |E| = O(1). Then rFVD ∩ ab for all ab ∈ E can be computed
in O(|∂C|+ |rFVD ∩ ∂C|) time.

Recall that L is the list of all apexed triangles 4 with rCell(4) ∩ ∂C 6= φ sorted along
∂P with respect to their bottom sides. Note that an apexed triangle intersects at most two
edges of γC . Thus, once we compute Lab and Lba for all edges ab of γC , we can compute
rFVD ∩ γC in O(|L|) time.

4.2.1 Computing Lab and Lba for all edges ab of γ
In this section, we show how to compute Lab and Lba for all edges ab of γ in O(|L|+ |∂C|)
time. Recall that all endpoints of the geodesic paths bounding the t-path-cell C lie in ∂P .
Let ab be an edge of γ, where b is the clockwise neighbor of a. The edge ab is a chord of P
and divides P into two subpolygons such that γ \ ab is contained in one of the subpolygons.
Let P1(ab) be the subpolygon containing γ \ ab and P2(ab) be the other subpolygon. For an
apexed triangle in Lab, its bottom side lies in ∂P2(ab) and its apex lies in ∂P1(ab). On the
other hand, for an apexed triangle in Lba, its bottom side lies in ∂P1(ab) and its apex lies in
∂P2(ab). Moreover, if its apex lies in Pj(ab), then so does its definer for j = 1, 2. By the
construction, P2(ab) and P2(e′) are disjoint in their interior for any edge e′ ∈ γ \ {ab}.

Using this, we compute Lab for all edges ab in γ as follows. Initially, Lab for all edges ab
are set to φ. We update the list by scanning the apexed triangles in L from the first to the
end. When we handle an apexed triangle 4 ∈ L, we first find the edge ab of γ such that
P2(ab) contains the bottom side of 4 and check whether 4∩ ab = φ. If it is nonempty, we
append 4 to Lab. Otherwise, we do nothing. Then we handle the apexed triangle next to 4.
For Lba, we do analogously except that we find the edge ab of γ such that P2(ab) contains
the definer of 4.

Note that any three apexed triangles 41,42,43 ∈ L appear on L in the order of their
definers (and their bottom sides) appearing on ∂P . Thus to find the edge ab of γ such that
P2(ab) contains the definer (or the bottom side) of 4, it is sufficient to check at most two
edges; the edge e′ such that P2(e′) contains the bottom side of the apexed triangle previous
to 4 in L and the clockwise neighbor of e′. Therefore, this procedure takes in O(|L|) time.

The following lemmas summarize this section.

I Lemma 18. Let C be a t-path-cell and γ̃ be a simple closed curve connecting t′ ≤ t

convex vertices of C lying on ∂P such that two consecutive vertices in clockwise order are
connected by a geodesic path. Once rFVD ∩ ∂C is computed, rFVD ∩ γ̃ can be computed in
O(|rFVD ∩ ∂C|+ |∂C|) time.

I Lemma 19. Each iteration takes O(n) time and the algorithm in this section terminates in
O(log logn) iterations. Thus the running time of the algorithm in this section is O(n log logn).

5 Computing rFVD in the interior of a base cell

In this section, we consider a base cell T which is a lune-cell or a pseudo-triangle. Assume
that rFVD ∩ ∂T has already been computed. We extend rFVD ∩ ∂T into the interior of the
cell T in O(|rFVD ∩ ∂T |) time.

To make the description easier, we first make two assumptions: (1) for any apexed triangle
4, rCell(4) ∩ ∂T is connected and contains the bottom side of 4, and (2) T is a lune-cell.
At the end of this section, we generalize the algorithm to handle every base cell.
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5.1 Definition for a new distance function
Without loss of generality, we assume that the bottom side of T is horizontal. We bound a
domain by introducing a box B containing T because the algorithm in [5] is valid only when
the domain is bounded. To apply the algorithm for computing the abstract Voronoi diagram
in [5], we need to define a new distance function f4 : B → R since g4 is not continuous.
Imagine that we partition B into five regions, as depicted in Figure 6(a), with respect to
an apexed triangle 4. We will define f4 as a function consisting of at most five algebraic
functions each of whose domain corresponds to a partitioned region in B.

Consider five line segments `1, `2, `3, `4 and `5 such that their common endpoint is a(4)
and the other endpoints lie on ∂B. The line segments `1 and `2 contain the left and the
right corners of 4, respectively. The line segments `3 and `5 are orthogonal to `2 and `1,
respectively. The line segment `4 is contained in the line bisecting the angle of 4 at a(4)
but it does not intersect int(4). See Figure 6(a).

Then B is partitioned by these five line segments into five regions. We denote the
region bounded by `1 and `2 which contains 4 by Gin(4). Note that d(4) /∈ Gin(4) if
d(4) 6= a(4). The remaining four regions are denoted by GLside(4), GLtop(4), GRtop(4),
and GRside(4) in the clockwise order from Gin(4) along ∂B.

For a point x ∈ GLside(4) ∪GLtop(4), let x̂4 denote the orthogonal projection of x on
the line containing `1. Similarly, for a point x ∈ GRside(4) ∪GRtop(4) \ `4, let x̂4 denote
the orthogonal projection of x on the line containing `2. For a point x ∈ Gin(4), we set
x̂4 = x.

We define a new distance function f4 : B → R for each apexed triangle 4 with
rCell(4) ∩ ∂T 6= φ as follows.

f4(x) =
{
d(a(4),d(4))− ‖x̂4 − a(4)‖ if x ∈ GLtop(4) ∪GRtop(4)
d(a(4),d(4)) + ‖x̂4 − a(4)‖ otherwise,

where ‖x− y‖ denote the Euclidean distance between x and y. Note that f4 is continuous
on B. Each contour curve, that is a set of points with the same function value, consists of
two line segments and at most one circular arc. See Figure 6(b).

Here, we assume that there is no pair (41,42) of apexed triangles such that two sides,
one from 41 and the other from 42, are parallel. If there exists such a pair, the contour
curves for two apexed triangles may overlap. We will show how to avoid the assumption at
the end of this section by slightly perturbing the distance function defined in this section.

By the definition of f4, the following lemma holds.

I Lemma 20. The difference of f4(x1) and f4(x2) is less than or equal to ‖x1 − x2‖ for
any two points x1, x2 ∈ B, where ‖x− y‖ is the Euclidean distance between x and y.

5.2 An algorithm for computing rFVD ∩ T
To compute the farthest-point geodesic Voronoi diagram restricted to T , we apply the
algorithm in [5] with this new distance function, which computes the abstract Voronoi
diagram in a domain where each site has a unique cell touching the boundary of the domain.
In the abstract Voronoi diagram, no explicit sites or distance functions are given. Instead, for
any pair of sites s, s′, the open domains D(s, s′) and D(s′, s) are given. Let A be the set of
all apexed triangles with rFVD∩ ∂T . In our problem, we regard the apexed triangles in A as
the sites and B as the domain for the abstract Voronoi diagram. For two apexed triangles 41
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Figure 6 (a) Five regions are defined by the five line segments from `1 to `5 (b) The dashed
curves are a few contour curves with respect to f4.

and 42 in A, we define the open domain D(41,42) as the set {x ∈ B : f41(x) > f42(x)}.
We denote the abstract Voronoi diagram for the apexed triangles by aFVD and the cell of 4
on aFVD by aCell(4).

To apply the algorithm in [5], we show that the distance function we define in Section 5.1
satisfies the following. Let A′ be a subset of A.
1. For any two apexed triangles 41 and 42 in A, the set {x ∈ B : f41(x) = f42(x)} is

a curve with endpoints on ∂B. The curve consists of O(1) pieces of algebraic curves.
(Lemma 28)

2. Each apexed triangle 4 in A′ has exactly one connected and nonempty cell in the abstract
Voronoi diagram of A′. (Corollary 26)

3. Each point in B belongs to the closure of an abstract Voronoi cell, which directly follows
from the definition and Lemma 28.

4. The abstract Voronoi diagrams of A and A′ form a tree and a forest, respectively.
(Lemma 29)

Thus, we can compute aFVD using the algorithm in [5]. We will prove that aFVD
restricted to T is exactly the refined farthest-point geodesic Voronoi diagram restricted to T .
(See Corollary 24.) Note that we already have the abstract Voronoi diagram restricted to ∂T
which coincides with the refined farthest-point geodesic Voronoi diagram restricted to ∂T .
After computing aFVD on B, we traverse aFVD and extract aFVD lying inside T .

5.3 The abstract Voronoi diagram with the distance function
We assume that the first line segment of the geodesic path from a(4) to d(4) lies in the left
side of the line containing `4. Remind that T is a lune cell and therefore it is bounded by a
convex chain and a concave chain.

In this section, we show that the function we defined satisfies the conditions in Section 5.2.
The following two technical lemmas are used to prove that rCell(4) is contained in aCell(4)
for an apexed triangle 4 ∈ A.

I Lemma 21. Let 4 be an apexed triangle with rCell(4) ∩ T 6= φ such that π(d(4),a(4))
does not overlap with (but possibly crosses) the concave chain of T . Then, f4(x) ≤ d(d(4), x)
for any point x ∈ T . The equality holds if x lies in 4.



22 FVD of points on the boundary of a simple polygon

x2

`4

(b)

a(4)

`2

d(4)

(c)

x

T

x′1

x′
x̂4

d(4)
w

w′x1

`′2

GRtop(4)GLtop(4)

e

`1 `2

`3

(a)

d(4)

a(4)

x′2
x′1

x1

x2

GRside(4)GLside(4)

x̂1

x̂2

Figure 7 (a) d(d(4), x̂1) ≤ d(d(4), x′1) and d(d(4), x̂2) ≤ d(d(4), x′2). (b) π(d(4), x1) contains
a(4), thus f4(x1) < d(x1,d(4)). For x2, π(d(4), x1) intersects e, thus either ∂T does not intersect
`4 or intersects exactly once. (c) The point x′ is 4(x) or a point on ∂P . We prove the lemma for
this case by showing that f4(x) ≤ f4(x′) = d(d(4),a(4))− ‖x′ − a(4)‖ < d(d(4), x).

Proof. We first consider a point x ∈ T ∩ GLside(4). Among all points on `1, a(4) is
the point closest to d(4). Thus there exists a point x′ on the line containing `1 with
d(d(4), x) = d(d(4), x′). See Figure 7(a). Moreover, d(d(4), x̂4) < d(d(4), x′), which
implies that f4(x) < d(d(4), x) by definition. The case for a point in GRside(4) is analogous.

Consider a point x ∈ T ∩GLtop(4). Recall that x lies in T and ∂T consists of a convex
chain and a concave chain. The set T \ 4 consists of two connected regions, one lies to the
left of 4 and the other lies to the right of 4. There are two possibilities: (1) x lies in the left
region or (2) x lies in the right region. See Figure 7(b). If x lies in the left region, π(d(4), x)
contains a(4), thus d(d(4), x) > d(d(4),a(4)) > f4(x), which proves the lemma for this
case. If x lies in the right region, π(d(4), x) contains an endpoint of e, where e is the edge
of T crossing 4. Moreover, e is contained in the concave chain of T . Let w be the point
where `4 intersects the concave chain of T . Note that f4(x) < f4(w). Let w′ be the point
on π(d(4),a(4)) with d(a(4), w′) = ‖a(4) − w‖. If w′ does not exist, then f4(w) < 0,
thus f4(x) < 0, which implies f4(x) < d(a(4), x). Otherwise, d(d(4), w′) < d(d(4), a),
where a is an endpoint of e. Note that π(d(4), x) contains at least one of the endpoints of
e. This means that f4(x) < f4(w) = d(d(4), w′) < d(d(4), a) < d(d(4), x), which proves
the lemma for this case.

Consider a point x ∈ T ∩GRtop(4). Then x̂4 is the orthogonal projection of x onto the
line containing `2 by definition. Note that it is possible that the line segment `a connecting
x̂4 and a(4) intersects ∂P . To avoid this, we choose x′ as the first point in `a ∩ ∂P
from a(4) other than a(4). If there is no such point, we set x′ = x̂4. See Figure 7(c).
Note that f4(x) ≤ f4(x′). Then we show that f4(x′) = d(d(4),a(4)) − ‖a(4) − x′‖ ≤
d(d(4), x), which implies that f4(x) ≤ d(d(4), x). If d(d(4),a(4)) < ‖a(4) − x′‖, the
inequality is trivial since the left side of the inequality is negative. Thus let us assume
that d(d(4),a(4)) ≥ ‖a(4) − x′‖. Thus, there is a point x′′ on π(d(4),a(4)) with
d(a(4), x′′) = ‖a(4) − x′‖. In this case, d(d(4), x′′) = d(d(4),a(4)) − ‖a(4) − x′‖ ≤
d(d(4), x′). Moreover, π(d(4), x) intersects the line segment connecting x′ and a(4).
The geodesic distance between the intersection and x′ is less than the geodesic distance
between the intersection and x. Thus, we have d(d(4), x′) ≤ d(d(4), x). This implies that
f4(x′) = d(d(4),a(4))−‖a(4)−x′‖ ≤ d(d(4), x). Therefore, f4(x) ≤ d(d(4), x) for any
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Figure 8 (a) rCell(4′) is not incident to rCell(4a) since they lie in the different sides bounded
by `b. (b) For x lying to the right of `′, ‖x̂4a − w‖ < ‖x̂4′ − w‖, thus f4a (x) > f4′ (x).

point x ∈ T ∩GRtop(4).
For a point x ∈ Gin(4), we have f4(x) = d(a(4),d(4)) + ‖a(4) − x‖ = d(d(4), x).

Thus, the lemma holds for any point in T . J

I Lemma 22. Let 4 be an apexed triangle such that rCell(4) ∩ T is nonempty and
π(d(4),a(4)) overlaps with the concave chain of T . Then f4(x) ≤ d(d(4), x) for any
point x ∈ T \ G, where G is the region contained in GLtop(4) bounded by `4 and the line
containing `2. The equality holds if x lies in 4.

Proof. All arguments in the proof of Lemma 21 hold, except for the case that x ∈ G. Note
that the proof of Lemma 21 for the case that x ∈ T ∩GRtop(4) also holds for the case that
x ∈ T ∩ (GLtop(4) \G). J

Now, we are ready to prove that the function we defined satisfies the conditions which the
algorithm in [5] assumes. The following lemma implies that the abstract Voronoi diagram
of the set A of apexed triangle 4 with rCell(4) ∩ ∂T 6= φ restricted to T coincides with
rFVD ∩ T .

I Lemma 23. For an apexed triangle 4 and a point x ∈ T ∩ rCell(4), x lies in aCell(4).

Proof. Assume to the contrary that there is an apexed triangle4 and a point x ∈ T∩rCell(4)
such that x /∈ aCell(4). This means that there is an apexed triangle 4′ 6= 4 such that
f4(x) ≤ f4′(x). Among all such apexed triangles, we choose the one with the maximum
f4′(x).

If π(d(4′),a(4′)) does not overlap with the concave chain of T , we have f4′(x) ≤
d(d(4′), x) by Lemma 21. Note that x lies in 4 since x ∈ rCell(4). By definition, we have
f4′(x) ≤ d(d(4′), x) < d(d(4), x) = f4(x), which is a contradiction. If π(d(4′),a(4′))
overlaps with the concave chain of T and x lies in T \G, where G is the region contained
in GLtop(4) bounded by `4 and the line containing `2, we have f4′(x) ≤ d(d(4′), x) by
Lemma 22. Then this is a contradiction by an argument similar to the one for the case that
π(d(4′),a(4′)) does not overlap with the concave chain of T .

The only remaining case is that π(d(4′),a(4′)) overlaps with the concave chain of T
and x ∈ T ∩G. Let w = a(4′). In the following, we show that there is an apexed triangle
4a such that f4′(x) < f4a

(x). This is a contradiction as we chose the apexed triangle 4′
with maximum f4′(x). We have w /∈ int(rCell(4′)). Since π(d(4′),a(4′)) overlaps with the
concave chain of T , w lies in the concave chain of T . But it does not lie on the endpoints
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of the chain since for every point p ∈ 4′, the combinatorial structure of π(d(4′), p) is the
same and π(d(4′), p) contains a(4′).

If w lies on the boundary of rCell(4′), there is another apexed triangle 4a such that
f4a(w) = f4′(w) and w ∈ 4a. See Figure 8(a). This means that rCell(4′) and rCell(4a)
share their boundaries. However, we have 4′∩4a = {w} since 4′ and 4a lie in the different
sides of the line containing the bottom side of 4a. Thus, no arc of rFVD is shared by rCell(4′)
and rCell(4a), which is a contradiction.

If w does not lie on the boundary of rCell(4′), let w′ be the vertex of T neighboring to w
on the concave chain of T such that d(d(4′), w) < d(d(4′), w′). See Figure 8(b). In this case,
there is an apexed triangle 4a 6= 4′ such that d(d(4a), w) > d(d(4′), w) and the bottom
side of 4a is contained in ww′. Let `′ be the line containing the side of 4′ other than its
bottom side which is farther to w′. The point x lies in the side of `′ containing w′. Since 4a
has its bottom side on the line containing ww′, we have ‖w − x̂4a‖ ≤ ‖w − x̂4′‖. Therefore,
f4a

(x) = d(d(4a), w)−‖w− x̂4a
‖ ≥ d(d(4a), w)−‖w− x̂4′‖ > d(d(4′), w)−‖w− x̂4′‖ =

d(d(4′),a(4′))− ‖a(4′)− x̂4′‖ = f4′(x) for all points x ∈ T ∩G, which is a contradiction.
Therefore, for all cases, the lemma holds. J

I Corollary 24. The part of the abstract Voronoi diagram with the function f4 contained in
T for all apexed triangles 4 ∈ A coincides with the refined farthest-point geodesic Voronoi
diagram restricted to T .

I Lemma 25. For any two apexed triangles 41 and 42, the set D(41,42) is connected.

Proof. By Corollary 24, we have rCell(41) ⊆ D(41,42). Recall that the bottom side of 41
is contained in rCell(41) by the assumption we made at the beginning of this section. By
Lemma 20, Gin(41) \ 41 is also contained in D(41,42).

Let a be a point in D(41,42)\ rCell(41). If a ∈ Gin(41), the line segment ab connecting
a and b is contained in D(41,42) by Lemma 20, where b is the point on the bottom side of
41 at which the line passing through a(41) and a crosses. Since b lies in rCell(41), a lies in
the connected component of D(41,42) containing rCell(41).

Thus we assume that a /∈ Gin(41). Note that Gin(41) is a triangle. Let b = `1 ∩ ∂B if a
lies in GLtop(41)∪GLside(41), and b = `2 ∩ ∂B otherwise. The point b lies in the connected
component of D(41,42) containing rCell(41). Without loss of generality, we assume that
ab is horizontal and a lies to the left of b. Then ab does not intersect the interior of 41.
We claim that ab ⊆ D(41,42), which implies that a lies in the connected component of
D(41,42) containing rCell(41) and thus the lemma holds.

Consider f41 and f42 with domain ab. Since ab ⊂ GLtop(41) ∪ GLside(41) or ab ⊂
GRtop(41) ∪GRside(41), the function f41 is linear on ab. Note that f41(a) > f42(a) and
f41(b) > f42(b).

Let h1 and h3 denote the connected components of ab\42 containing a and b, respectively,
and h2 denote the set ab ∩42. The functions f42 with domain h1 and with domain h3 are
linear. On the other hand, f42 with domain h2 is hyperbolic.

If f42 with domain h1 and with domain h3 are both increasing, the slope for f42 with
domain h3 is steeper than the slope for f42 with domain h1. Similarly, if f42 with domain h1
and with domain h3 are both decreasing, the slope for f42 with domain h1 is steeper than the
slope for f42 with domain h3. If one function is increasing and the other function is decreasing,
the maximum for f42 with domain ab is either a or b since each contour curve consists of two
line segments and at most one circular arc. Therefore, in any case, f42(x) ≤ f(x) for any
point x ∈ ab, where f : ab→ R is the linear function with f(a) = f42(a) and f(b) = f42(b).
This implies that f41(x) > f42(x) for any point x ∈ ab. Therefore, ab ⊆ D(41,42). J
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With a similar argument, the following corollary also holds.

I Corollary 26. For an apexed triangle 4 in any subset A′ of A,
⋂
4′ 6=4∈A′ D(4,4′) is

nonempty and connected.

I Corollary 27. There exists at most one point x ∈ B such that f41(x) = f42(x) = f43(x)
for any three apexed triangles 41,42, and 43.

I Lemma 28. For any two apexed triangles 41 and 42 in A, the set {x ∈ B : f41(x) =
f42(x)} is a curve consisting of O(1) algebraic curves. Moreover, both endpoints of the curve
lie on ∂B.

Proof. Consider contour curves one from 41 and the other from 42. At any fixed value, the
contour curves for 41 and 42 cross in constant times under the assumption that no side of
41 is parallel to a side of 42. By this fact and Lemma 25, the set {x ∈ B : f41(x) = f42(x)}
is a curve whose endpoints lie on ∂B.

Consider the subdivision of B by overlaying the two subdivisions, one from 41 and the
other from 42. There are at most nine cells in the subdivision of B. In each cell, f41 and
f42 are algebraic functions. Thus, the set {x ∈ C : f41(x) = f42(x)} is an algebraic curve
for each cell C. J

I Lemma 29. Let A be the set of all triangles with rCell(4) ∩ ∂T 6= φ and A′ be a subset of
A. The abstract Voronoi diagram with f4 on B for all apexed triangles 4 in A forms a tree.
Moreover, the abstract Voronoi diagram with f4′ on B for all triangles 4′ in A′ forms a
forest.

Proof. To prove the first part of the lemma, it is sufficient to show that aCell(4) is incident
to ∂B for any apexed triangle 4 ∈ A. Recall that Gin(4) \ 4 is contained in aCell(4).
Moreover, Gin(4) \ 4 intersects ∂B. Therefore, all aCell(4) are incident to ∂B and the
lemma holds.

Similarly, for the second part of the lemma, it is sufficient to show that the abstract
Voronoi cell is incident to ∂B for any apexed triangle 4 ∈ A′. This can be proved using a
similar argument. J

Handling the case that some sides of two apexed triangles are parallel To handle the
degenerate case, we modify f4 as follows by defining x̂4 differently. First, we perturb `3
and `5 slightly such that `3 and `5 are circular arcs with common endpoint a(4) and the
other endpoints on ∂B. We choose a sufficiently large number r(4) which is the common
radius of `3 and `5. Then the center of `3 is the point on the ray from a(4) in the direction
opposite to `1 with distance r(4) from a(4). Similarly, we choose the center of the circular
arc `5. Then, for a point x ∈ GLside(4) ∪GLtop(4), we map x into the point x̂4 on the line
containing `1 such that r(4) = ‖x̂4 − c‖ = ‖x− c‖, for some point c on the ray from a(4)
in the direction opposite to `1. Similarly, we define x̂4 for a point x ∈ GRside(4)∪GRtop(4).
Now, each contour curve consists of three circular arcs.

There are two rules with regard to choosing r(4): (1) r(4) 6= r(4′) for any two distinct
apexed triangles 4 and 4′, and (2) the apexed triangles 4 such that π(d(4),a(4)) overlaps
with the concave chain of T use r(4) values greater than the ones for the other apexed
triangles.

Let f ′4 denote the new distance function. All lemmas and corollaries hold for f ′4. They
can be proved in a way similar to the proofs for the original distance function f4, except for
Lemma 25. For Lemma 25, the proof of the lemma is valid only for a sufficiently large box
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Figure 9 (a) The pseudo-triangle is subdivided into interior-disjoint four lune-cells. (b) The
line segments `1 and `2 subdivide the lune-cell into three interior-disjoint lune-cells. Note that
`1 ∩ `2 = φ. (c) We trim an apexed triangle 4 such that rCell(4) ∩ ∂T is connected.

B containing T . In this case, in O(|A|) time, we can compute the size of a box which makes
the proof valid. The size of such a box depends on the smallest r(4) for all apexed triangles
4 and the ratio of the slopes of two sides of any two apexed triangles whose refined cells are
consecutive along ∂T .

Recall that the algorithm we described in this section assumes that (1) for any apexed
triangle 4, rCell(4) ∩ ∂T is connected and contains the bottom side of 4, and (2) T is a
lune-cell. In the following lemma, we show that we can compute rFVD ∩ T for any base cell
T using the algorithm we described.

I Lemma 30. Given a base cell T from the subdivision algorithm, rFVD∩T can be computed
in O(|rFVD ∩ ∂T |+ |∂T |) time.

Proof. We subdivide each base cell further into subcells to satisfy the assumptions and
apply the algorithm for each subcell. For a pseudo-triangle T , we subdivide the cell into
four subcells as depicted in Figure 9(a). Let v1, v2, v3 be three vertices of T such that the
boundary of T consists of π(v1, v2), π(v2, v3) and π(v3, v1), respectively.

Consider the three vertices v′1, v′2, v′3 of T such that the maximal common path for π(vi, vj)
and π(vi, vk) is π(vi, v′i) for i = 1, 2, 3, where j and k are two distinct indices other than i.

First, we find a line segment v′1x1 ⊂ T such that v′1x1 ∩ ∂T = {v′1, x1}. Then, we find two
line segments v′ixi ⊂ T such that v′ixi ∩ ∂T = {v′i} and xi ∈ v′1x1 for i = 2, 3. This can also
be done in O(|rFVD ∩ ∂T |) time. Then the three line segments v′ixi subdivide T into four
lune-cells T1, T2, T3 and T4 for i = 1, 2, 3. Note that to apply the algorithm in this section,
rFVD ∩ ∂Tj must be given. It can be computed in O(|rFVD ∩ ∂T |) time by Corollary 17.
Moreover, the total complexity of rFVD ∩ ∂Tj for j = 1, 2, 3, 4 is O(|rFVD ∩ ∂T |). Then
we handle each lune-cell separately. Now every base cell is a lune-cell, thus satisfies the
assumption (2).

We subdivide each lune-cell Tj further to satisfy the assumption (1). For an apexed
triangle 4 appearing more than once, we subdivide Tj further as we did in the third phase
of the subdivision by scanning the connected components of rCell(4) ∩ ∂Tj . We find all
connected components r′ such that the line segment connecting r′ and a(4) intersects Tj
other than its endpoints. Then we insert such connected components in the clockwise order
along ∂Cj into a queue. Afterwards, we consider the connected components of rCell(4)∩∂Tj
which is not in the queue in the clockwise order along ∂Cj one by one.

To handle a connected component r, we do the following. We remove the first element
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of the queue and denote it by r′. Let x be a point in the first element r′ of the queue. If
the line passing through x and a(4) intersects r, then we subdivide the cell by the line. We
repeat this until the line passing through a point of the first element of the queue does not
intersect r. Then, we handle the connected component next to r.

We do this for all apexed triangles such that rCell(4) appears on ∂Tj more than once.
Note that since rCell(4)’s are pairwise disjoint in their interiors, the line segments subdividing
Tj do not intersect one another. Moreover, the extensions do not intersect rFVD. Thus we
have rFVD∩ ∂T ′j for all subcells T ′j of Tj . Recall that rFVD is the set of the points which are
not contained in any refined cell. Therefore, Tj is subdivided into O(|rFVD ∩ ∂Tj |) subcells
and the sum of O(|rFVD ∩ ∂T ′j |+ |∂T ′j |) for all subcells T ′j is O(|rFVD ∩ ∂Tj |).

Now, all apexed triangles appear on each cell at most once. If rCell(4) ∩ ∂T ′j contains
a convex vertex v of T ′j (there are at most two such vertices), we decompose 4 into two
triangles by the line passing through a(4) and v. Then only one of the triangles intersects the
interior of T ′j by the definition of T ′j . We replace 4 with the triangle. Then, rCell(4)∩∂T ′j is
contained in an edge of T ′j for all apexed triangles 4 ∈ A. Let x and y be the two endpoints
of rCell(4)∩ ∂T ′j . See Figure 9(c). We reduce 4 into the triangle whose corners are x, y and
a(4). From now on, when we refer an apexed triangle 4, we mean its trimmed triangle.
Then rCell(4) ∩ T ′j is still contained in 4 by Lemma 4. We do this for all apexed triangles.
Every apexed triangle with rCell(4) ∩ ∂T ′j 6= φ has its bottom side on ∂T ′j , thus satisfies the
assumption (1). Note that these subcells still satisfy the assumption (2).

Now, we apply the algorithm for each subcell, which can be done in time linear to the
total complexity of O(|rFVD∩ ∂T ′j |) for all subcells T ′j from T , which is O(|rFVD∩ ∂T |). J

I Theorem 31. The farthest-point geodesic Voronoi diagram of the vertices of a simple
n-gon can be computed in O(n log logn) time.

6 A set of sites on the boundary

In this section, we show that the results presented above are general enough to work when
the set S is an arbitrary set of sites contained in the boundary of P .

Since S is a subset of sites contained in ∂P , we can assume without loss of generality
that all sites of S are vertices of P by splitting the edges where they lie on. In this section,
we decompose the boundary of P into chains of consecutive vertices that share the same
S-farthest neighbor and edges of P whose endpoints have distinct S-farthest neighbors. The
following lemma is a counterpart of Lemma 1. Lemma 1 is the only place where it was
assumed that S is the set of vertices of P .

I Lemma 32. Given a set S of m sites contained in ∂P , we can compute the S-farthest
neighbor of each vertex of P in O(n+m) time.

Proof. Let w : P → R be a real valued function on the vertices of P such that for each
vertex v of P ,

w(v) =
{
DP if v ∈ S
0 otherwise ,

where DP is any fixed constant larger than the diameter of P . Recall that the diameter of P
can be computed in linear time [9].

For each vertex p ∈ P , we want to identify n(p). To this end, we define a new distance
function d∗ : P × P → R such that for any two points u and v of P , d∗(u, v) = d(u, v) +
w(u) + w(v). Using a result from Hershberger and Suri [9, Section 6.1 and 6.3], in O(n+m)
time we can compute the farthest neighbor of each vertex of P with respect to d∗.
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By the definition of the function w, the maximum distance from any vertex of P is
achieved at a site of S. Therefore, the farthest neighbor from a vertex v of P with respect to
d∗ is indeed the S-farthest neighbor, n(v), of v. J

I Theorem 33. The farthest-point geodesic Voronoi diagram of m points on the boundary
of a simple n-gon can be computed in O((n+m) log logn) time.
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