
A linear-time algorithm for the geodesic center of a simple1

polygon2

Hee-Kap Ahn∗ Luis Barba†,‡ Prosenjit Bose† Jean-Lou De Carufel†3

Matias Korman§ Eunjin Oh∗4

August 13, 20155

Abstract6

Let P be a closed simple polygon with n vertices. For any two points in P , the geodesic7

distance between them is the length of the shortest path that connects them among all8

paths contained in P . The geodesic center of P is the unique point in P that minimizes the9

largest geodesic distance to all other points of P . In 1989, Pollack, Sharir and Rote [Disc.10

& Comput. Geom. 89] showed an O(n logn)-time algorithm that computes the geodesic11

center of P . Since then, a longstanding question has been whether this running time can12

be improved. In this paper we affirmatively answer this question and present a linear time13

algorithm to solve this problem.14

1 Introduction15

Let P be a simple polygon with n vertices. Given two points x, y in P (either on the boundary or16

in the interior), the geodesic path π(x, y) is the shortest path contained in P connecting x with y.17

If the straight-line segment connecting x with y is contained in P , then π(x, y) is a straight-line18

segment. Otherwise, π(x, y) is a polygonal chain whose vertices (other than its endpoints) are19

reflex vertices of P . We refer the reader to [22] for more information on geodesic paths.20

The geodesic distance between x and y, denoted by |π(x, y)|, is the sum of the Euclidean21

lengths of each segment in π(x, y). Throughout this paper, when referring to the distance between22

two points in P , we mean the geodesic distance between them.23

Given a point x ∈ P , a (geodesic) farthest neighbor of x, is a point fP (x) (or simply f(x))24

of P whose geodesic distance to x is maximized. To ease the description, we assume that each25

vertex of P has a unique farthest neighbor. This general position condition was also assumed by26

Aronov et al. [2] and can be obtained by applying a slight perturbation to the positions of the27

vertices [10].28

Let FP (x) be the function that maps each x ∈ P to the distance to a farthest neighbor of x29

(i.e., FP (x) = |π(x, f(x))|). A point cP ∈ P that minimizes FP (x) is called the geodesic center30

∗Department of Computer Science and Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeong-
buk, Korea. {heekap@postech.ac.kr, jin9082@postech.ac.kr}. Supported by the NRF grant 2011-0030044
(SRC-GAIA) funded by the Korea government (MSIP).
†School of Computer Science, Carleton University, Ottawa, Canada. jit@scs.carleton.ca,

jdecaruf@cg.scs.carleton.ca
‡Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium. lbarbafl@ulb.ac.be
§Tohoku University, mati@dais.is.tohoku.ac.jp. Partially supported by the ELC project (MEXT KAKENHI

No. 24106008).

1

of P . Similarly, a point s ∈ P that maximizes FP (x) (together with f(s)) is called a geodesic31

diametral pair and their distance is known as the geodesic diameter. Asano and Toussaint [3]32

showed that the geodesic center is unique (whereas it is easy to see that several geodesic diametral33

pairs may exist).34

In this paper we show how to compute the geodesic center of P in O(n) time.35

1.1 Previous Work36

Since the early 80s the problem of computing the geodesic center (and its counterpart, the37

geodesic diameter) has received a lot of attention from the computational geometry community.38

Chazelle [7] gave the first algorithm for computing the geodesic diameter (which runs in O(n2)39

time using linear space). Afterwards, Suri [27] reduced it to O(n log n)-time without increasing40

the space constraints. Finally, Hershberger and Suri [15] presented a fast matrix search technique,41

one application of which is a linear-time algorithm for computing the diameter.42

The first algorithm for computing the geodesic center was given by Asano and Toussaint [3],43

and runs in O(n4 log n)-time. In 1989, Pollack, Sharir, and Rote [25] improved it to O(n log n)44

time. Since then, it has been an open problem whether the geodesic center can be computed45

in linear time (indeed, this problem was explicitly posed by Pollack et al. [25] and later by46

Mitchell [22, Chapter 27]).47

Several variations of these two problems have been considered. Indeed, the same problem48

has been studied under different metrics. For example, the L1 geodesic distance [6], the link49

distance [26, 16, 9] (where we look for the path with the minimum possible number of bends or50

links), or even rectilinear link distance [23, 24] (a variation of the link distance in which only51

isothetic segments are allowed). The diameter and center of a simple polygon for both the L152

and rectilinear link metrics can be computed in linear time (whereas O(n log n) time is needed53

for the link distance).54

Another natural extension is the computation of the diameter and center in polygonal domains55

(i.e., polygons with one or more holes). Polynomial time algorithms are known for both the56

diameter [4] and center [5], although the running times are significantly larger (i.e., O(n7.73) and57

O(n12+ε), respectively).58

1.2 Outline59

In order to compute the geodesic center, cP , Pollack et al. [25] introduced a linear time chord-60

oracle. Given a chord C that splits P into two sub-polygons, the oracle determines which61

sub-polygon contains cP . Combining this operation with an efficient search on a triangulation62

of P , Pollack et al. narrow the search of cP within a triangle (and afterwards find the center63

using optimization techniques). Their approach however, does not allow them to reduce the64

complexity of the problem in each iteration, and hence it runs in Θ(n log n) time.65

The general approach of our algorithm described in Section 6 is similar: partition P into O(1)66

cells, use an oracle to determine which cell contains cP , and recurse within the cell. Our approach67

differs however in two important aspects that allows us to speed-up the algorithm. First, we do68

not use the chords of a triangulation of P to partition the problem into cells. We use instead69

a cutting of a suitable set of chords. Secondly, we compute a set Σ of O(n) functions, each70

defined in a triangular domain contained in P , such that their upper envelope, φ(x), coincides71

with FP (x). Thus, we can “ignore” the polygon P and focus only on finding the minimum of the72

function φ(x).73

The search itself uses ε-nets and cutting techniques, which guarantee that both the size of the74

cell containing cP and the number of functions of Σ defined in it decrease by a constant fraction75

2

(and thus leads to an overall linear time algorithm). This search has however two stopping76

conditions, (1) reach a subproblem of constant size, or (2) find a triangle containing cP . In the77

latter case, we show that φ(x) is a convex function when restricted to this triangle. Thus, finding78

its minimum becomes an optimization problem that we solve in Section 7 using cuttings in R3.79

The key of this approach lies in the computation of the functions of Σ and their triangular80

domains. Each function g(x) of Σ is defined in a triangular domain 4 contained in P and is81

associated to a particular vertex w of P . Intuitively speaking, g(x) maps points in 4 to their82

(geodesic) distance to w. We guarantee that, for each point x ∈ P , there is one function g83

defined in a triangle containing x, such that g(x) = FP (x). To compute these triangles and their84

corresponding functions, we proceed as follows.85

In Section 2, we use the matrix search technique introduced by Hershberger and Suri [15] to86

decompose the boundary of P , denoted by ∂P , into connected edge-disjoint chains. Each chain87

is defined by either (1) a consecutive list of vertices that have the same farthest neighbor v (we88

say that v is marked if it has such a chain associated to it), or (2) an edge whose endpoints have89

different farthest neighbors (such edge is called a transition edge).90

In Section 3, we consider each transition edge ab of ∂P independently and compute its91

hourglass. Intuitively, the hourglass of ab, Hab, is the region of P between two chains, the edge92

ab and the chain of ∂P that contains the farthest neighbors of all points in ab. Inspired by93

a result of Suri [27], we show that the sum of the complexities of all hourglasses defined on a94

transition edge is O(n). (The combinatorial complexity, or simply complexity of a geometric95

object is the total number of vertices and edges that define it.) In addition, we provide a new96

technique to compute all these hourglasses in linear time.97

While the hourglasses cover a big part of P , to complete the coverage we need to consider98

funnels from each marked vertex. Intuitively, the funnel of a marked vertex v is the region of P99

that contains all the paths from v to every point of ∂P that is farther from v than from any other100

vertex of P . In Section 4, we prove that the total complexity of all the funnels of all marked101

vertices is O(n). Moreover, we provide an algorithm to compute all these funnels in linear time.102

In Section 5 we show how to compute the functions in Σ and their respective triangles. We103

distinguish two cases: (1) Inside each hourglass Hab of a transition edge, we use a technique104

introduced by Aronov et al. [2] that uses the shortest-path trees of a and b in Hab to construct105

O(|Hab|) triangles with their respective functions (for more information on shortest-path trees106

refer to [11]). (2) Inside the funnel of each marked vertex v, we compute triangles that encode107

the distance from v. Moreover, we guarantee that these triangles cover every point of P whose108

farthest neighbor is v. Overall, we compute the O(n) functions of Σ in linear time.109

2 Decomposing the boundary110

In this section, we decompose the boundary of P into chains of consecutive vertices that share111

the same farthest neighbor and edges of P whose endpoints have distinct farthest neighbors.112

Using a result from Hershberger and Suri [15], in O(n) time we can compute the farthest113

neighbor of each vertex of P . Recall that the farthest neighbor of each vertex of P is always a114

convex vertex of P [3] and is unique by our general position assumption. The (farthest) Voronoi115

region of a vertex v of P is the set of points R(v) = {x ∈ P : FP (x) = |π(x, v)|} (including116

boundary points).117

We mark the vertices of P that are farthest neighbors of at least one vertex of P . Let M118

denote the set of marked vertices of P (clearly this set can be computed in O(n) time after119

applying the result of Hershberger and Suri). In other words, M contains all vertices of P whose120

Voronoi region contains at least one vertex of P .121

3

P
v6 v1

v2

v3

v4

v5

Figure 1: Each vertex of the boundary of P is assigned with a farthest neighbor which is then marked.
The boundary is then decomposed into vertex-disjoint chains, each associated with a marked vertex,
joined by transition edges (blue) whose endpoints have different farthest neighbors.

Given a vertex v of P , the vertices of P whose farthest neighbor is v appear contiguously122

along ∂P [2]. Therefore, after computing all these farthest neighbors, we effectively split the123

boundary into subchains, each associated with a different vertex of M ; see Figure 1.124

Given two points x and y on ∂P , let ∂P (x, y) be the polygonal chain that starts at x and125

follows the boundary of P clockwise until reaching y. We say that three (non-empty) disjoint126

sets A,B and C contained in ∂P are in clockwise order if B ⊂ ∂P (a, c) for any a ∈ A and any127

c ∈ C. (To ease notation, we say that three points x, y, z ∈ ∂P are in clockwise order if {x}, {y}128

and {z} are in clockwise order).129

Let a and b be the endpoints of an edge of ∂P such that b is the clockwise neighbor of a along130

∂P and f(a) 6= f(b). Recall that we have computed f(a) and f(b) in the previous step and note131

that a, b, f(a), f(b) are in clockwise order. For any vertex v ∈ ∂P such that f(a), v, f(b) are in132

clockwise order, we know that there cannot be a vertex u of P such that f(u) = v. As proved by133

Aronov et al. [2, Corollary 2.7.4], if there is a point x on ∂P whose farthest neighbor is v, then134

x must lie on the open segment (a, b). In other words, the Voronoi region R(v) restricted to ∂P135

is contained in (a, b).136

3 Hourglasses137

For any polygonal chain C = ∂P (p0, pk), the hourglass of C, denoted byHC , is the simple polygon138

contained in P bounded by C, π(pk, f(p0)), ∂P (f(p0), f(pk)) and π(f(pk), p0); see Figure 2. We139

call C and ∂P (f(p0), f(pk)) the top and bottom chains of HC , respectively, while π(pk, f(p0))140

and π(f(pk), p0) are referred to as the walls of HC .141

We say that the hourglass HC is open if its walls are vertex-disjoint. We say that C is a142

transition chain if f(p0) 6= f(pk) and neither f(p0) nor f(pk) are interior vertices of C. In143

particular, if an edge ab of ∂P is a transition chain, we say that it is a transition edge (see144

Figure 2).145

Lemma 3.1. [Restatement of Lemma 3.1.3 of [2]] If C is a transition chain of ∂P , then the146

hourglass HC is an open hourglass.147

Note that by Lemma 3.1, the hourglass of each transition chain is open. In the remainder148

of the paper, all the hourglasses considered are defined by a transition chain. That is, they are149

open and their top and bottom chains are edge-disjoint.150

4

P

f(p3)

f(p0)

C

p0 p1
p2

HC

q2

q0

q1 f(q0)

f(q2)

p3

f(t1)

f(t0)

t0

t1

f(p3)

f(p0)

C

p0
p2 p3

p1

Figure 2: Given two edge-disjoint transition chains, their hourglasses are open and the bottom chains of
their hourglasses are also edge-disjoint. Moreover, these bottom chains appear in the same cyclic order
as the top chains along ∂P .

The following lemma is depicted in Figure 2 and is a direct consequence of the Ordering151

Lemma proved by Aronov et al. [2, Corollary 2.7.4].152

Lemma 3.2. Let C1, C2, C3 be three edge-disjoint transition chains of ∂P in clockwise order.153

Then, the bottom chains of HC1 , HC2 and HC3 are also edge-disjoint and are in clockwise order.154

Let γ be a geodesic path joining two points on the boundary of P . We say that γ separates155

two points x1 and x2 of ∂P if the points of X = {x1, x2} and the endpoints of γ alternate along156

the boundary of P . For consistency, we also say that γ separates x1 and x2 if either of them157

coincides with an endpoint of γ. We say that a geodesic path γ separates an hourglass H if it158

separates the points of its top chain from those of its bottom chain.159

Lemma 3.3. Let C1, . . . , Cr be edge-disjoint transition chains of ∂P . Then, there is a set of160

t ≤ 10 geodesic paths γ1, . . . , γt with endpoints on ∂P such that for each 1 ≤ i ≤ r there exists161

1 ≤ j ≤ t such that γj separates HCi
. Moreover, this set can be computed in O(n) time.162

Proof. Aronov et al. showed that there exist four vertices v1, . . . , v4 of P and geodesic paths163

π(v1, v2), π(v2, v3), π(v3, v4) such that for any point x ∈ ∂P , one of these paths separates x from164

f(x) [2, Lemma 2.7.6]. Moreover, they show how to compute this set in O(n) time.165

Let Γ = {π(vi, vj) : 1 ≤ i < j ≤ 4} and note that v1, . . . , v4 split the boundary of P166

into at most four connected components. If a chain Ci is completely contained in one of these167

components, then one path of Γ separates the top and bottom chain of HCi . Otherwise, some168

vertex vj is an interior vertex of Ci. However, because the chains C1, . . . , Cr are edge-disjoint,169

there are at most four chains in this situation. For each chain Ci containing a vertex vj , we170

add the geodesic path connecting the endpoints of Ci to Γ. Therefore, Γ consists of at most 10171

geodesic paths and each hourglass HCi
has its top and bottom chain separated by some path of172

Γ. Since only O(1) additional paths are computed, this can be done in linear time.173

A chord of P is an edge joining two non-adjacent vertices a and b of P such that ab ⊆ P .174

Therefore, a chord splits P into two sub-polygons.175

Lemma 3.4. [Restatement of Lemma 3.4.3 of [2]] Let C1, . . . , Cr be a set of edge-disjoint tran-176

sition chains of ∂P in clockwise order. Then each chord of P appears in O(1) hourglasses among177

HC1
, . . . ,HCr

.178

Proof. Note that chords can only appear on walls of hourglasses. Because hourglasses are open,179

any chord must be an edge on exactly one wall of each of these hourglasses. Assume, for the180

5

sake of contradiction, that there exist two points s, t ∈ P whose chord st is in three hourglasses181

HCi
, HCj

and HCk
(for some 1 ≤ i < j < k ≤ r) such that s is visited before t when going from182

the top chain to the bottom one along the walls of the three hourglasses. Let si and ti be the183

points in the in the top and bottom chains of HCi
, respectively, such that π(si, ti) is the wall of184

HCi
that contains st (analogously, we define sk and tk).185

Because Ci, Cj , Ck are in clockwise order, Lemma 3.2 implies that the bottom chains of Ci, Cj186

and Ck are also in clockwise order. Therefore, Cj lies between si and sk and the bottom chain of187

HCj
lies between ti and tk. That is, for each x ∈ Cj and each y in the bottom chain of HCj

, the188

geodesic path π(x, y) is “sandwiched” by the paths π(si, ti) and π(sk, tk). In particular, π(x, y)189

contains st for each pair of points in the top and bottom chain of HCj
. However, this implies190

that the hourglass HCj is not open—a contradiction that comes from assuming that st lies in191

the wall of three open hourglasses, when this wall is traversed from the top chain to the bottom192

chain. Analogous arguments can be used to bound the total number of walls that contain the193

edge st (when traversed in any direction) to O(1).194

Lemma 3.5. Let x, u, y, v be four vertices of P in clockwise order. Given the shortest-path trees195

Tx and Ty of x and y in P , respectively, such that Tx and Ty can answer lowest common ancestor196

(LCA) queries in O(1) time, we can compute the path π(u, v) in O(|π(u, v)|) time. Moreover,197

all edges of π(u, v), except perhaps one, belong to Tx ∪ Ty.198

Proof. Let X (resp. Y) be the set containing the LCA in Tx (resp. Ty) of u, y, and of v, y (resp.199

u, x and x, y). Note that the points of X ∪ Y lie on the path π(x, y) and can be computed in200

O(1) time by hypothesis. Moreover, using LCA queries, we can decide their order along the path201

π(x, y) when traversing it from x to y. (Both X and Y could consist of a single vertex in some202

degenerate situations.) Two cases arise:203

Case 1. If there is a vertex x∗ ∈ X lying after a vertex y∗ ∈ Y along π(x, y), then the204

path π(u, v) contains the path π(y∗, x∗). In this case, the path π(u, v) is the concatenation of205

the paths π(u, y∗), π(y∗, x∗), and π(x∗, v) and that the three paths are contained in Tx ∪ Ty.206

Moreover, π(u, v) can be computed in time proportional to its length by traversing along the207

corresponding tree; see Figure 3 (top).208

Case 2. In this case the vertices of X appear before the vertices of Y along π(x, y). Let x′209

(resp. y′) be the vertex of X (resp. Y) closest to x (resp. y).210

Let u′ be the last vertex of π(u, x) that is also in π(u, y). Note that u′ can be constructed211

by walking from u′ towards x until the path towards y diverges. Thus, u′ can be computed in212

O(|π(u, u′)|) time. Define v′ analogously and compute it in O(|π(v, v′)|) time.213

Let P ′ be the polygon bounded by the geodesic paths π(x′, u′), π(u′, y′), π(y′, v′) and π(v′, x′).214

Because the vertices of X appear before those of Y along π(x, y), P ′ is a simple polygon; see215

Figure 3 (bottom).216

In this case the path π(u, y) is the union of π(u, u′), π(u′, v′) and π(v′, v). Because π(u, u′)217

and π(v′, v) can be computed in time proportional to their length, it suffices to compute π(u′, v′)218

in O(|π(u′, v′)|) time.219

Note that P ′ is a simple polygon with only four convex vertices x′, u′, y′ and v′, which are220

connected by chains of reflex vertices. Thus, the shortest path from x′ to y′ can have at most one221

diagonal edge connecting distinct reflex chains of P ′. Since the rest of the points in π(u′, v′) lie222

on the boundary of P ′ and from the fact that each edge of P ′ is an edge of Tx ∪ Ty, we conclude223

all edges of π(u, v), except perhaps one, belong to Tx ∪ Ty.224

We want to find the common tangent between the reflex paths π(u′, x′) and π(v′, y′), or the225

common tangent of π(u′, y′) and π(v′, x′) as one of them belongs to the shortest path π(u′, v′).226

Assume that the desired tangent lies between the paths π(u′, x′) and π(v′, y′). Since these paths227

consist only of reflex vertices, the problem can be reduced to finding the common tangent of two228

6

u u′

u

v

x
y

u

v

x

y

u

v

x
y

Y

X

x

y
X

v

x

y

x′

Y

u

v

P ′

y′

v′

Figure 3: (top) Case 1 of the proof of Lemma 3.5 where the path π(u, v) contains a portion of the path
π(x, y). (bottom) Case 2 of the proof of Lemma 3.5 where the path π(u, v) has exactly one edge being
the tangent of the paths π(u′, y′) and π(v′, x′).

convex polygons. By slightly modifying the linear time algorithm to compute this tangents, we229

can make it run in O(|π(u′, v′)|) time.230

Since we do not know if the tangent lies between the paths π(u′, x′) and π(v′, y′), we process231

the chains π(u′, y′) and π(v′, x′) in parallel and stop when finding the desired tangent. Conse-232

quently, we can compute the path π(u, v) in time proportional to its length.233

Lemma 3.6. Let P be a simple polygon with n vertices. Given k disjoint transition chains
C1, . . . , Ck of ∂P , it holds that

k∑
i=1

|HCi
| = O(n).

Proof. Because the given transition chains are disjoint, Lemma 3.2 implies that the bottom234

chains of their respective hourglasses are also disjoint. Therefore, the sum of the complexities235

of all the top and bottom chains of these hourglasses is O(n). To bound the complexity of their236

walls we use Lemma 3.4. Since no chord is used more than a constant number of times, it suffices237

to show that the total number of chords used by all these hourglasses is O(n).238

To prove this, we use Lemma 3.3 to construct O(1) paths γ1, . . . , γt such that for each
1 ≤ i ≤ k, there is a path γj that separates the top and bottom chains of HCi . For each
1 ≤ j ≤ t, let

Hj = {HCi
: the top and bottom chain of HCi

are separated by γj}.

Since the complexity of the shortest-path trees of the endpoints of γj is O(n) [11], and from the
fact that the chains C1, . . . , Ck are disjoint, Lemma 3.5 implies that the total number of edges
in all the hourglasses of Hj is O(n). Moreover, because each of these edges appears in O(1)
hourglasses among C1, . . . , Ck, we conclude that∑

H∈Hj

|H| = O(n).

7

Since we have only O(1) separating paths, our result follows.239

3.1 Building hourglasses240

Let E be the set of transition edges of ∂P . Given a transition edge ab ∈ E, we say that Hab is241

a transition hourglass. In order to construct the triangle cover of P , we construct the transition242

hourglass of each transition edge of E. By Lemma 3.6, we know that
∑
ab∈E |Hab| = O(n).243

Therefore, our aim is to compute the cover in time proportional to the size of Hab.244

By Lemma 3.3 we can compute a set Γ of O(1) paths such that for any transition edge245

ab, the transition hourglass Hab is separated by one (or more) paths in this set. For each246

endpoint of the O(1) paths of Γ, we compute its shortest-path tree in linear time [8, 11]. In247

addition, we preprocess these trees in linear time to support constant time LCA queries [14].248

Both computations need linear time per endpoint and use O(n) space. Since we do this process249

for a constant number of endpoints, overall this preprocessing takes O(n) time.250

Let γ ∈ Γ be a separating path. Note that γ separates the boundary of P into two chains Sγ251

and S′γ such that Sγ ∪ S′γ = ∂P . Let H(γ) be the set of transition hourglasses separated by γ252

whose transition edge is contained in Sγ (whenever an hourglass is separated by more than one253

path, we pick one arbitrarily). Note that we can classify all transition hourglasses into the sets254

H(γ) in O(n) time (since |Γ| = O(1)).255

Lemma 3.7. Given a separating path γ ∈ Γ, it holds that
∑
H∈H(γ) |H| = O(n). Moreover, we256

can compute all transition hourglasses of H(γ) in O(n) time.257

Proof. Since all transition hourglasses in H are defined from disjoint transition edges, Lemma 3.6258

implies that
∑
H∈H(γ) |H| = O(n).259

By construction, the wall of each of these hourglasses consists of a (geodesic) path that260

connects a point in Sγ with a point in S′γ . Let u ∈ Sγ and v ∈ S′γ be two vertices such that261

π(u, v) is the wall of a hourglass in H(γ). Because LCA queries can be answered in O(1) time,262

Lemma 3.5 allows us to compute this path in O(|π(u, v)|) time. Therefore, we can compute all263

hourglasses of H(γ) in O(
∑
H∈H(γ) |H|+ n) = O(n).264

Because |Γ| = O(1) and since every transition hourglass is separated by at least one path265

in Γ, we obtain the following result.266

Corollary 3.8. The added complexity of the transition hourglasses of all transition edges of P267

is O(n). Moreover, all these hourglasses can be constructed in O(n) time.268

4 Funnels269

Let C = (p0, . . . , pk) be a chain of ∂P and let v be a vertex of P not in C. The funnel of v to C,270

denoted by Sv(C), is the simple polygon bounded by C, π(pk, v) and π(v, p0); see Figure 4 (a).271

Note that the paths π(v, pk) and π(v, p0) may coincide for a while before splitting into disjoint272

chains. We call C the main chain of Sv(C) while π(pk, v) and π(v, p0) are referred to as the273

walls of the funnel. See Lee and Preparata [17] or Guibas et al. [11] for more details on funnels.274

A subset R ⊂ P is geodesically convex if for every x, y ∈ R, the path π(x, y) is contained in275

R. This funnel Sv(C) is then the minimum geodesically convex set that contains v and C.276

Given two points x, y ∈ P , the (geodesic) bisector of x and y is the set of points contained277

in P that are equidistant from x and y. This bisector is a curve, contained in P , that consists278

of straight-line segments and hyperbolic arcs. Moreover, this curve intersects ∂P only at its279

endpoints [1, Lemma 3.22].280

8

C

P

Sv(C)

a)

v

b)

v0 vk

v

C

P

Sv(C)

Figure 4: a) The funnel Sv(C) of a vertex v and a chain C contained in ∂P are depicted. b) The
decomposition of Sv(C) into apexed triangles produced by the shortest-path map of v.

Lemma 4.1. Let v be a vertex of P and let C be a transition chain such R(v) ∩ ∂P ⊆ C and281

v 6∈ C. Then, R(v) is contained in the funnel Sv(C)282

Proof. Let a and b be the endpoints of C such that a, b, f(a) and f(b) are in clockwise order.283

Because R(v) ∩ ∂P ⊂ C, we know that f(a), v and f(b) are in clockwise order.284

Let α (resp. β) be the bisector of v and f(a) (resp. f(b)). Let ha (resp. hb) be the set of285

points of P that are farther from v than from f(a) (resp. f(b)). Note that α is the boundary of286

ha while β bounds hb.287

By definition, we know that R(v) ⊆ ha∩hb. Therefore, it suffices to show that ha∩hb ⊂ Sv(C).288

Assume for a contradiction that there is a point of ha ∩ hb lying outside of Sv(C). By continuity289

of the geodesic distance, the boundaries of ha ∩ hb and Sv(C) must intersect. Because a /∈ ha290

and b /∈ hb, both bisectors α and β must have an endpoint on the edge ab. Since the boundaries291

of ha ∩ hb and Sv(C) intersect, we infer that β ∩ π(v, b) 6= ∅ or α ∩ π(v, a) 6= ∅. Without loss of292

generality, assume that there is a point w ∈ β ∩ π(v, b), the case where w lies in α ∩ π(v, a) is293

analogous.294

Since w ∈ β, we know that |π(w, v)| = |π(w, f(b))|. By the triangle inequality and since w
cannot be a vertex of P as w intersects ∂P only at its endpoints, we get that

|π(b, f(b))| < |π(b, w)|+ |π(w, f(b))| = |π(b, w)|+ |π(w, v)| = |π(b, v)|.

Which implies that b is farther from v than from f(b)—a contradiction that comes from assuming295

that ha ∩ hb is not contained in Sv(C).296

4.1 Funnels of marked vertices297

Recall that for each marked vertex v ∈M , we know at least of one vertex on ∂P such that v is298

its farthest neighbor.299

For any marked vertex v, let u1, . . . , uk−1 be the vertices of P such that v = f(ui) and assume300

that u1, . . . , uk−1 are in clockwise order. Let u0 and uk be the neighbors of u1 and uk−1 other301

than u2 and uk−2, respectively. Note that both u0u1 and uk−1uk are transition edges of P . Let302

Cv = (u0, . . . , uk) and consider the funnel Sv(Cv) defined by v.303

Lemma 4.2. Let x be a point in P . If f(x) = v for some marked vertex v ∈M , then x ∈ Sv(Cv).304

9

Proof. Since f(u0) 6= f(uk), Cv is a transition chain. Moreover, Cv contains R(v) ∩ ∂P by305

definition. Therefore, Lemma 4.1 implies that R(v) ⊂ Sv(Cv). Since v = f(x), we know that306

x ∈ R(v) and hence that x ∈ Sv(Cv).307

We focus now on computing the funnels defined by the marked vertices of P .308

Lemma 4.3. Given a marked vertex v such that Cv = (u0, . . . , uk), it holds that |Sv(Cv)| =309

O(k + |Hu0u1 |+ |Huk−1uk
|). Moreover, Sv(Cv) can be computed in O(|Sv(Cv)|) time.310

Proof. Since Hu0u1
and Huk−1uk

are transition hourglasses, we can assume that they have been311

computed using Corollary 3.8.312

Because v = f(u1) = f(uk−1), we know that v is a vertex of both Hu0u1
and Huk−1uk

. By313

definition, we have π(v, u0) ⊂ Hu0u1
and π(v, uk) ⊂ Huk−1uk

. Thus, we can compute both paths314

π(v, u0) and π(v, uk) inO(|Hu0u1 |+|Huk−1uk
|) time [11] and their complexities areO(|Hu0u1 |) and315

O(|Huk−1uk
|), respectively. So, overall, the funnel Sv(Cv) has total complexity O(k + |Hu0u1 |+316

|Huk−1uk
|) and can be constructed in linear time in its size.317

Recall that, by Corollary 3.8, the total sum of the complexities of all transition hourglasses
is O(n). Therefore, Lemma 4.3 implies that

∑
v∈M
|Sv(Cv)| = O

(
n+

∑
ab∈E

|Hab|
)

= O(n).

Because the funnel of each marked vertex can be computed in linear time in its size, we obtain318

the following result.319

Corollary 4.4. The added complexity of the funnels of all marked vertices of P is O(n). More-320

over, all these funnels can be constructed in O(n) time.321

5 Covering the polygon with apexed triangles322

An apexed triangle 4 = (a, b, c) with apex a is a triangle contained in P with an associated
distance function g4(x), called the apex function of 4, such that (1) a is a vertex of P , (2) there
is an edge of ∂P containing both b and c, and (3) there is a vertex w of P , called the definer of
4, such that

g4(x) =

{
−∞ if x /∈ 4
|xa|+ |π(a,w)| = |π(x,w)| if x ∈ 4

Intuitively, 4 bounds a constant complexity region where the geodesic distance function from323

w is explicitly stored by our algorithm.324

In this section, we show how to find a set of O(n) apexed triangles of P such that the upper325

envelope of their apex functions coincides with FP (x). To this end, we first decompose the326

transition hourglasses into apexed triangles that encode all the geodesic distance information327

inside them. For each marked vertex v ∈ M we construct a funnel that contains the Voronoi328

region of v. We then decompose this funnel into apexed triangles that encode the distance from v.329

The same approach was already used by Pollack et al. in [25, Section 3]. Given a segment330

contained in the interior of P , they show how to compute a linear number of apexed triangles331

such that FP (x) coincides with the upper envelope of the corresponding apex functions in the332

given segment.333

While the construction we follow is analogous, we use it in the transition hourglass Hab334

instead of the full polygon P . Therefore, we have to specify what is the relation between the335

10

a b

f(b) f(a)

va vb

4v
a b

f(b) f(a)

va vb

4v

u1u3
u2

s1 s2

v v

xa xb

Figure 5: (left) A vertex v visible from the segment ab lying on the bottom chain of Hab, and the
triangle 4v which contains the portion of ab visible from v. (right) The children u1 and u2 of v are
visible from ab while u3 is not. The triangle 4v is split into apexed triangles by the rays going from u1

and u2 to v.

upper envelope of the computed functions and FP (x). We will show that the upper envelope336

of the apex functions computed in Hab coincides with FP (x) inside the Voronoi region R(v) of337

every vertex v ∈ Bab.338

5.1 Inside a transition hourglass339

Let ab be a transition edge of P such that b is the clockwise neighbor of a along ∂P . Let Bab340

denote the open bottom chain of Hab. As noticed above, a point on ∂P can be farthest from a341

vertex in Bab only if it lies in the open segment ab. That is, if v is a vertex of Bab such that342

R(v) 6= ∅, then R(v) ∩ ∂P ⊂ ab.343

In fact, not only this Voronoi region is inside Hab when restricted to the boundary of P , but344

we can further bound its location and show that R(v) ⊂ Hab. The next result follows trivially345

from Lemma 4.1.346

Corollary 5.1. Let v be a vertex of Bab. Then R(v) ⊂ Hab.347

Our objective is to compute O(|Hab|) apexed triangles contained in Hab, each with its distance348

function, such that the upper envelope of these apex functions coincides with FP (x) restricted349

to Hab inside the Voronoi region of every vertex in Bab.350

Let Ta and Tb be the shortest-path trees in Hab rooted at a and b, respectively. We can351

compute these trees in O(|Hab|) time [11]. For each vertex v such that f(a), v and f(b) are in352

clockwise order, let va and vb be the neighbors of v in the paths π(v, a) and π(v, b), respectively.353

We say that a vertex v is visible from ab if va 6= vb. Note that if a vertex v is visible, then354

the extension of the segments vva and vvb must intersect the top segment ab at points xa and355

xb, respectively. Therefore, for each visible vertex v, we obtain a triangle 4v = 4(v, xa, xb) as356

shown in Figure 5.357

We further split 4v into a series of triangles with apex at v as follows: Let u be a child of v358

in either Ta or Tb. As noted by Pollack et al., v can be of three types, either (1) u is not visible359

from ab (and is hence a child of v in both Ta and Tb); or (2) u is visible from ab, is a child of v360

only in Tb, and vbvu is a left turn; or (3) u is visible from ab, is a child of v only in Ta, and vavu361

is a right turn.362

Let u1, . . . , uk−1 be the children of v of type (2) sorted in clockwise order around v. Let c(v)363

be the maximum distance from v to any invisible vertex in the subtrees of Ta and Tb rooted at364

v; if no such vertex exists, then c(v) = 0. Define a function dl(v) on each vertex v of Hab in a365

recursive fashion as follows: If v is invisible from ab, then dl(v) = c(v). Otherwise, let dl(v) be366

11

the maximum of c(v) and max{dl(ui) + |uiv| : ui is a child of v of type (2)}. Symmetrically, we367

define a function dr(v) using the children of type (3) of v.368

For each 1 ≤ i ≤ k− 1, extend the segment uiv past v until it intersects ab at a point si. Let
s0 and sk be the intersections of the extensions of vva and vvb with the segment ab. We define
then k apexed triangles contained in 4v as follows. For each 0 ≤ i ≤ k− 1, consider the triangle
4(si, v, si+1) whose associated apexed (left) function is

fi(x) =

{
|xv|+ maxj>i{c(v), |vuj |+ dl(uj)} if x ∈ 4(si, v, si+1)
−∞ otherwise

In a symmetric manner, we define a set of apexed triangles induced by the type (3) children of v369

and their respective apexed (right) functions.370

Let g1, . . . , gr and 41, . . . ,4r respectively be an enumeration of all the generated apex func-371

tions and apexed triangles such that gi is defined in the triangle 4i. Because each function is372

determined uniquely by a pair of adjacent vertices in Ta or in Tb, and since these trees have373

O(|Hab|) vertices each, we conclude that r = O(|Hab|).374

Note that for each 1 ≤ i ≤ r, the apexed triangle 4i has two vertices on the segment ab375

and a third vertex, say ai, being its apex such that for each x ∈ 4i, gi(x) = |π(x,wi)| for some376

vertex wi of Hab. Recall that wi is called the definer of 4i.377

Lemma 5.2. Given a transition edge ab of P , we can compute a set Aab of O(|Hab|) apexed378

triangles in O(|Hab|) time with the property that for any point p ∈ P such that f(p) ∈ Bab, there379

is an apexed triangle 4 ∈ Aab with apex function g and definer equal to f(p) such that380

1. p ∈ 4 and381

2. g(p) = FP (p).382

Proof. Because p ∈ R(f(p)), Lemma 5.1 implies that p ∈ Hab. Consider the path π(p, f(p)) and383

let v be the successor of p along this path. By construction of Aab, there is a triangle 4 ∈ Aab384

apexed at v with definer w that contains p. The apex function g(x) of 4 encodes the geodesic385

distance from x to w. Because FP (x) is the upper envelope of all the geodesic functions, we know386

that g(p) ≤ FP (p).387

To prove the other inequality, note that if v = f(p), then trivially g(p) = |pv| + |π(v, w)| ≥388

|pv| = |π(p, f(p))| = FP (p). Otherwise, let z be the next vertex after v in the path π(p, f(p)).389

Three cases arise:390

(a) If z is invisible from ab, then so is f(p) and hence,

|π(p, f(p))| = |pv|+ |π(v, f(p))| ≤ |pv|+ c(v) ≤ g(p).

(b) If z is a child of type (2), then z plays the role of some child uj of v in the notation used
during the construction. In this case:

|π(p, f(p))| = |pv|+ |vz|+ |π(z, f(p))| ≤ |pv|+ |vuj |+ dl(uj) ≤ g(p).

(c) If z is a child of type (3), then analogous arguments hold using the (right) distance dr.391

Therefore, regardless of the case FP (p) = |π(p, f(p))| ≤ g(p).392

To bound the running time, note that the recursive functions dl, dr and c can be computed in393

O(|Ta|+ |Tb|) time. Then, for each vertex visible from ab, we can process it in time proportional394

to its degree in Ta and Tb. Because the sum of the degrees of all vertices in Ta and Tb is395

O(|Ta|+ |Tb|) and from the fact that both |Ta| and |Tb| are O(|Hab|), we conclude that the total396

running time to construct Aab is O(|Hab|).397

12

In other words, Lemma 5.2 says that no information on farthest neighbors is lost if we only398

consider the functions of Aab within Hab. In the next section we use a similar approach to399

construct a set of apexed triangles (and their corresponding apex functions), so as to encode the400

distance from the vertices of M .401

5.2 Inside the funnels of marked vertices402

We now proceed to split a given funnel into O(|Sv(Cv)|) apexed triangles that encode the distance
function from v. To this end, we use the algorithm described by Guibas et al. [12, Section 2] to
compute the shortest-path map of v in Sv(Cv) in O(|Sv(Cv)|) time. This algorithm produces a
partition of Sv(Cv) into O(|Sv(Cv)|) interior disjoint triangles with vertices on ∂P , such that each
triangle consists of all points in Sv(Cv) whose shortest path to v consists of the same sequence
of vertices; see Figure 4 (b). Let 4 be a triangle in this partition and let a be its apex, i.e., the
first vertex found along each path π(x, v), where x ∈ 4. We define the apex function g4(x) of
4 as follows:

g4(x) =

{
|xa|+ |π(a, v)| if x ∈ 4
−∞ otherwise

Notice that for each x ∈ 4, g4(x) = |π(x, v)|.403

Lemma 5.3. The shortest-path map of v in Sv(Cv) can be computed in O(|Sv(Cv)|) time and pro-404

duces O(|Sv(Cv)|) interior disjoint apexed triangles such that their union covers Sv(Cv). More-405

over, for each point x ∈ R(v), there is an apexed triangle 4 with apex function g(x) such that406

(1) x ∈ 4 and (2) g(x) = FP (x).407

Proof. The above procedure splits Sv(Cv) into O(|Sv(Cv)|) apexed triangles, such that the apex408

function in each of them is defined as the geodesic distance to v. By Lemma 4.2, if x ∈ R(v),409

then x ∈ Sv(Cv). Therefore, there is an apexed triangle 4 with apex function g(x) such that410

x ∈ 4 and g(x) = |π(x, v)| = FP (x). Thus, we obtain properties (1) and (2).411

6 Prune and search412

With the tools introduced in the previous sections, we can describe the prune and search algo-413

rithm to compute the geodesic center. The idea of the algorithm is to partition P into O(1) cells,414

determine in which cell of P the center lies and recurse on that cell as a new subproblem with415

smaller complexity.416

We can discard all apexed triangles that do not intersect the new cell containing the center.417

Using cuttings to produce this partition of P , we can show that both the complexity of the cell418

containing the center, and the number of apexed triangles that intersect it decrease by a constant419

fraction in each iteration of the algorithm. This process is then repeated until either of the two420

objects has constant descriptive size.421

Let τ be the set of all apexed triangles computed in previous sections. Corollary 3.8 and422

Lemma 5.2 bound the number of apexed triangles constructed inside the transition hourglasses,423

while Corollary 4.4 and Lemma 5.3 do so inside the funnels of the marked vertices. We obtain424

the following.425

Corollary 6.1. The set τ consists of O(n) apexed triangles.426

Let φ(x) be the upper envelope of the apex functions of the triangles in τ (i.e., φ(x) =427

max{g(x) : 4 ∈ τ and g(x) is the apex function of 4}). The following result is a direct conse-428

quence of Lemmas 5.2 and 5.3, and shows that the O(n) apexed triangles of τ not only cover P ,429

but their apex functions suffice to reconstruct the function FP (x).430

13

Corollary 6.2. The functions φ(x) and FP (x) coincide in the domain of points of P , i.e., for431

each p ∈ P , φ(p) = FP (p).432

Given a chord C of P a half-polygon of P is one of the two simple polygons in which C splits433

P . A k-cell of P is a simple polygon obtained as the intersection of at most k half-polygons.434

Because a k-cell is the intersection of geodesically convex sets, it is also geodesically convex.435

The recursive algorithm described in this section takes as input a 4-cell (initially equal to436

P) containing the geodesic center of P and the set of apexed triangles of τ that intersect it. In437

each iteration, it produces a new 4-cell of smaller complexity that intersects just a fraction of438

the apexed triangles and contains the geodesic center of P . By recursing on this new cell, the439

complexity of the problem is reduced in each iteration.440

Let R be a 4-cell of P (initially equal to P) containing the geodesic center of P and let τR441

be the set of apexed triangles of τ that intersect R. Let mR = max{|R|, |τR|}, where |R| denotes442

the combinatorial complexity R. Recall that, by construction of the apexed triangles, for each443

triangle of τR at least one and at most two of its boundary segments are chords of P . Let CR444

be the set containing all chords that belong to the boundary of a triangle of τR. Therefore,445

|CR| ≤ 2|τR| ≤ 2mR.446

To construct ε-nets, we need some definitions (for more information on ε-nets refer to [20]).447

Let ϕ be the set of all open 4-cells of P . For each t ∈ ϕ, let CR(t) = {C ∈ CR : C ∩ t 6= ∅} be the448

set of chords of CR induced by t. Finally, let ϕCR = {CR(t) : t ∈ ϕ} be the family of subsets of449

CR induced by ϕ. Consider the set system (CR, ϕCR) (denoted by (CR, ϕ) for simplicity) defined450

by CR and ϕ. The proof of the next lemma is deferred to the Appendix for ease of readability.451

Lemma 6.3. The set system (CR, ϕ) has constant VC-dimension.452

Let ε > 0 be a sufficiently small constant whose exact value will be specified later. Because453

the VC-dimension of the set system (CR, ϕ) is finite by Lemma 6.3, we can compute an ε-net N454

of (CR, ϕ) in O(|CR|/ε) = O(mR) time [20]. The size of N is O(1
ε log 1

ε) = O(1) and its main455

property is that any 4-cell that does not intersect a chord of N will intersect at most ε|CR| chords456

of CR.457

Observe that N partitions R into O(1) sub-polygons (not necessarily 4-cells). We further458

refine this partition to obtain 4-cells. That is, we shoot vertical rays up and down from each459

endpoint of N , and from the intersection point of any two segments of N , see Figure 6. Overall,460

this partitions R into O(1) 4-cells such that each either (i) is a convex polygon contained in P461

of at most four vertices, or otherwise (ii) contains some chain of ∂P . Since |N | = O(1), the462

whole decomposition can be computed in O(mR) time (the intersections between segments of N463

are done in constant time, and for the ray shooting operations we walk along the boundary of R464

once).465

In order to determine which 4-cell contains the geodesic center of P , we extend each edge of a466

4-cell to a chord C. This can be done with two ray-shooting queries (each of which takes O(mR)467

time). We then use the chord-oracle from Pollack et al. [25, Section 3] to decide which side of468

C contains cP . The only requirement of this technique is that the function FP (x) coincides with469

the upper envelope of the apex functions when restricted to C. This holds by Corollary 6.2 and470

from the fact that τR consists of all the apexed triangles of τ that intersect R.471

Because the chord-oracle described by Pollack et al. [25, Section 3] runs in time linear in the472

number of functions defined on C, we can decide in total O(mR) time in which side of C the473

geodesic center of P lies. Since our decomposition into 4-cells has constant complexity, we need474

to perform O(1) calls to the oracle before determining the 4-cell R′ that contains the geodesic475

center of P .476

Note that the chord-oracle computes the minimum of FP (x) restricted to the chord before477

determining the side containing the minimum. In particular, if cP lies on any chord bounding478

14

N

P

N

P

R′

RR

Figure 6: The ε-net N splits R into O(1) sub-polygons that are further refined into a 4-cell decomposition
using O(1) ray-shooting queries from the vertices of the arrangement defined by N .

R′, then the chord-oracle will find it. Therefore, we can assume that cP lies in the interior of R′.479

Moreover, since N is a ε-net, we know that at most ε|CR| chords of CR intersect R′.480

Observe that both the complexity of R′ and τR′ decrease by a constant fraction. Indeed, by481

construction of the cutting at most 2εmR apexed triangles can intersect R′ (and thus |τR′ | ≤482

2εmR).483

In order to bound the complexity of R′ we use Corollary 6.2: function FP (x) is defined in484

each point of R′, and in particular for each vertex v of R′ there must exist an apexed triangle485

∆ ∈ τR′ such that v ∈ ∆. By definition of apexed triangles, each such triangle can contain at486

most three vertices of R′. Combining this fact with the bound of |τR′ | we obtain that R′ has at487

most 3|τR′ | ≤ 6εmR vertices. Thus, if we choose ε = 1/12, we guarantee that both the size of488

the 4-cell R′ and the number of apexed triangles in τR′ are at most mR/2.489

In order to proceed with the algorithm on R′ recursively, we need to compute the set τR′490

with the at most ε|CR| apexed triangles of τR that intersect R′ (i.e., prune the apexed triangles491

that do not intersect with R′). For each apexed triangle 4 ∈ τR, we can determine in constant492

time if it intersects R′ (either one of the endpoints is in R′ ∩ ∂P or the two boundaries have493

non-empty intersection in the interior of P). Overall, we need O(mR) time to compute the at494

most ε|CR| triangles of τR that intersect R′.495

By recursing on R′, we guarantee that after O(logmR) iterations, we reduce the size of either496

τR or R′ to constant. In the former case, the minimum of FP (x) can be found by explicitly497

constructing function φ in O(1) time. In the latter case, we triangulate R′ and apply the chord-498

oracle to determine which triangle will contain cP . The details needed to find the minimum of499

φ(x) inside this triangle are given in the next section.500

Lemma 6.4. In O(n) time we can find either the geodesic center of P or a triangle containing501

the geodesic center.502

7 Finding the center within a triangle503

In order to complete the algorithm it remains to show how to find the geodesic center of P for the504

case in which R′ is a triangle. If this triangle is in the interior of P , it may happen that several505

apexed triangles of τ (up to a linear number) fully contain R′. Thus, the pruning technique used506

in the previous section cannot be further applied. We solve this case with a different approach.507

Recall that φ(x) denotes the upper envelope of the apex functions of the triangles in τ , and508

the geodesic center is the point that minimizes φ. The key observation is that, as it happened509

with chords, the function φ(x) restricted to R′ is convex.510

15

Let τR′ = {41,42, . . . ,4m} be the set of m = O(n) apexed triangles of τ that intersect R′.
Let ai and wi be the apex and the definer of 4i, respectively. Let gi(x) be the apex function of
4i such that

g(x) =

{
|xai|+ κi if x ∈ 4i
−∞ otherwise

,

where κi = |π(ai, wi)| is a constant.511

By Corollary 6.2, we have φ(x) = FP (x). Therefore, the problem of finding the center is512

equivalent to the following optimization problem in R3:513

(P1). Find a point (x, r) ∈ R3 minimizing r subject to x ∈ R′ and

gi(x) ≤ r, for 1 ≤ i ≤ m.
Thus, we need to find the solution to (P1) to find the geodesic center of P . We use some514

remarks described by Megiddo in order to simplify the description of (P1) [21].515

To simplify the formulas, we square the equation |xai| ≤ r − κi:
‖x‖2 − 2x · ai + ‖ai‖2 = |xai|2 ≤ (r − κi)2 = r2 − 2rκi + κ2i .

And finally for each 1 ≤ i ≤ m, we define the function hi(x, r) as follows:

hi(x, r) =

{
‖x‖2 − 2x · ai + ‖ai‖2 − r2 + 2rκi − κ2i if x ∈ 4i
−∞ otherwise

.

Therefore, our optimization problem can be reformulated as:516

(P2). Find a point (x, r) ∈ R3 such that r is minimized subject to x ∈ R′ and

hi(x, r) ≤ 0 and r > max{κi}, for 1 ≤ i ≤ m.
Let h′i(x, r) = ‖x‖2− 2x · ai + ‖ai‖2− r2 + 2rκi−κ2i be a function defined in the entire plane517

and let (P2′) be an optimization problem equivalent to (P2) where every instance of hi(x, r) is518

replaced by h′i(x, r). The optimization (P2′) was studied by Megiddo in [21]. We provide some519

of the intuition used by Megiddo to solve this problem.520

Although the functions h′i(x, r) are not linear, they all have the same non-linear terms. There-
fore, for i 6= j, we get that equation h′i(x, r) = h′j(x, r) defines a separating plane

γi,j = {(x, r) ∈ R3 : 2(κi − κj)r − 2(ai − aj) · x+ ‖ai‖2 − ‖aj‖2 − κ2i + κ2j = 0}
As noted by Megiddo [21], this separating plane has the following property: If the solution521

(x, r) to (P2′) is known to lie to one side of γi,j , then one of the constraints is redundant.522

Thus, to solve (P2′) it sufficed to have a side-decision oracle to determine in which side of523

a plane γi,j the solution lies. Megiddo showed how to implement this oracle in a way that the524

running time is proportional to the number of constraints [21].525

Once we have such an oracle, problem (P2′) can be solved using a prune and search approach:526

pair the functions arbitrarily, and consider the set of m/2 separating planes defined by these pairs.527

For some constant t, compute a 1/t-cutting in R3 of the separating planes. A 1/t-cutting is a528

partition of the plane into O(t3) = O(1) convex regions each of which is of constant complexity529

and intersects at most m/2t separating planes. A cutting of planes can be computed in linear530

time in R3 for any t = O(1) [18]. After computing the cutting, determine in which of the531

regions the minimum lies by performing O(1) calls to the side-decision oracle. Because at least532

(t− 1)m/2t separating planes do not intersect this constant complexity region, for each of them533

we can discard one of the constraints as it becomes redundant. By repeating this algorithm534

recursively we obtain a linear running time.535

To solve (P2) we follow a similar approach, but our set of separating planes needs to be536

extended in order to handle apex functions as they are only defined in the same way as in (P2′)537

in a triangular domain. Note that no vertex of an apexed triangle can lie inside R′.538

16

7.1 Optimization problem in a convex domain539

In this section we describe our algorithm to solve the optimization problem (P2). We start by540

pairing the apexed triangles of τR′ arbitrarily to obtain m/2 pairs. By identifying the plane541

where P lies with the plane Z0 = {(x, y, z) : z = 0}, we can embed each apexed triangle in R3.542

A plane-set is a set consisting of at most five planes in R3. For each pair of apexed triangles543

(4i,4j) we define its plane-set as follows: For each chord of P bounding either4i or4j (at most544

two chords on each triangle), consider the line extending this chord and the vertical extrusion of545

this line in R3, i.e., the plane containing this chord orthogonal to Z0. The set containing these546

planes, together with the separating plane γi,j , is the plane-set of the pair (4i,4j).547

Let Γ be the union of all the plane-sets defined by the m/2 pairs of apexed triangles. Because548

the plane-set of each pair (4i,4j) consists of at most five planes and at least one unique to this549

pair, namely γi,j , we infer that m/2 ≤ |Γ| ≤ 5m/2.550

Compute a 1/t-cutting of Γ in O(m) time for some constant t to be specified later. Because t551

is constant, this 1/t-cutting splits the space into O(1) convex regions, each bounded by a constant552

number of planes [18]. Using a side-decision algorithm (to be specified later), we can determine553

the region Q of the cutting that contains the solution to (P2). Because Q is the region of a554

1/t-cutting of Γ, we know that at most |Γ|/t planes of Γ intersect Q. In particular, at most |Γ|/t555

plane-sets intersect Q and hence, at least (t − 1)|Γ|/t ≥ (t − 1)m/2t plane-sets do not intersect556

Q.557

Let (4i,4j) be a pair whose plane-set does not intersect Q. Let Q′ be the projection of Q on558

the plane Z0. Because the plane-set of this pair does not intersect Q, we know that Q′ intersects559

neither the boundary of 4i nor that of 4j . Two cases arise:560

Case 1. If either 4i or 4j does not intersect Q′, then we know that their apex function is561

redundant and we can drop the constraint associated with this apexed triangle.562

Case 2. If Q′ ⊂ 4i ∩ 4j , then we need to decide which constrain to drop. To this end,563

we consider the separating plane γi,j . Notice that inside the vertical extrusion of 4i ∩4j (and564

hence in Q), the plane γi,j has the property that if we know its side containing the solution to565

(P2), then one of the constraints can be dropped.566

Regardless of the case, if the plane-set of a pair (4i,4j) does not intersect Q, then we can567

drop one of its constraints. Since at least (t− 1)m/2t plane-sets do not intersect Q, we can drop568

at least (t−1)m/2t constraints. By choosing t = 2, we are able to drop at least (t−1)m/2t = m/4569

constraints. Consequently, after O(m) time, we are able to drop a constant fraction of the apexed570

triangles. By repeating this process recursively, we end up with a constant size problem in which571

we can compute the upper envelope of the functions explicitly and find the solution to (P2)572

using exhaustive search. Thus, the running time of this algorithm is bounded by the recurrence573

T (m) = T (3m/4) +O(m) which solves to O(m). Because m = O(n), we can find the solution to574

(P2) in O(n) time.575

The last detail is the implementation of the side-decision algorithm. Given a plane γ, we576

need to determine in which side lies the solution to (P2). To this end, we solve (P2) restricted577

to γ, i.e., with the additional constraint of (x, r) ∈ γ. This approach was used by Megiddo [21],578

the idea is to recurse by reducing the dimension of the problem. Another approach is to use a579

slight modification of the chord-oracle described by Pollack et al. [25, Section 3].580

Once the solution to (P2) restricted to γ is known, we can follow the same idea used by581

Megiddo [21] to find the side of γ containing the global solution to (P2). Find the apex functions582

that define the minimum restricted to γ. Since φ(x) = FP (x) is locally defined by these functions,583

we can decide in which side the minimum lies using convexity. We obtain the following result.584

Lemma 7.1. Let R′ be a convex trapezoid contained in P such that R′ contains the geodesic585

center of P . Given the set of all apexed triangles of τ that intersect R′, we can compute the586

17

geodesic center of P in O(n) time.587

The following theorem summarizes the result presented in this paper.588

Theorem 7.2. We can compute the geodesic center of any simple polygon P of n vertices in589

O(n) time.590

8 Further work591

Another way to compute the center of a simple polygon is to compute the farthest-point Voronoi592

diagram of its vertices. While the best known algorithm for this task runs in O(n log n) time,593

no lower bound is known for this instance of the problem. Therefore, it is natural to ask if the594

farthest-point Voronoi diagram of the set of vertices of a simple polygon can be computed in595

O(n) time.596

To generalize the result presented in this paper, we ask the following question. Given a set597

S of m points inside of a simple polygon P with n vertices, how fast can we compute the center598

of S inside P? That is, the point in P that minimizes the maximum geodesic distance to a599

point of S. While the (geodesic) farthest-point Voronoi diagram of S provides the answer in600

O((n + m) log(n + m)) time, we ask whether it is possible to compute this center in O(n + m)601

time.602

References603

[1] B. Aronov. On the geodesic Voronoi diagram of point sites in a simple polygon. Algorithmica,604

4(1-4):109–140, 1989.605

[2] B. Aronov, S. Fortune, and G. Wilfong. The furthest-site geodesic Voronoi diagram. Discrete606

& Computational Geometry, 9(1):217–255, 1993.607

[3] T. Asano and G. Toussaint. Computing the geodesic center of a simple polygon. Technical608

Report SOCS-85.32, McGill University, 1985.609

[4] S. W. Bae, M. Korman, and Y. Okamoto. The geodesic diameter of polygonal domains.610

Discrete & Computational Geometry, 50(2):306–329, 2013.611

[5] S. W. Bae, M. Korman, and Y. Okamoto. Computing the geodesic centers of a polygonal612

domain. In Proceedings of CCCG, 2014.613

[6] S. W. Bae, M. Korman, Y. Okamoto, and H. Wang. Computing the L1 geodesic diameter614

and center of a simple polygon in linear time. In Proceedings of LATIN, pages 120–131,615

2014.616

[7] B. Chazelle. A theorem on polygon cutting with applications. In Proceedings of FOCS,617

pages 339–349, 1982.618

[8] B. Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational619

Geometry, 6(1):485–524, 1991.620

[9] H. Djidjev, A. Lingas, and J.-R. Sack. An O(n log n) algorithm for computing the link center621

of a simple polygon. Discrete & Computational Geometry, 8:131–152, 1992.622

18

[10] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with623

degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66–104,624

1990.625

[11] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms626

for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,627

2(1-4):209–233, 1987.628

[12] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. Journal629

of computer and system sciences, 39(2):126–152, 1989.630

[13] H. Harborth and M. Möller. The Esther-Klein-problem in the projective plane. Inst. für631

Mathematik, TU Braunschweig, 1993.632

[14] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM633

Journal on Computing, 13(2):338–355, 1984.634

[15] J. Hershberger and S. Suri. Matrix searching with the shortest-path metric. SIAM Journal635

on Computing, 26(6):1612–1634, 1997.636

[16] Y. Ke. An efficient algorithm for link-distance problems. In Proceedings of SoCG, pages637

69–78, 1989.638

[17] D.-T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear639

barriers. Networks, 14(3):393–410, 1984.640

[18] J. Matoušek. Approximations and optimal geometric divide-and-conquer. Journal of Com-641

puter and System Sciences, 50(2):203–208, 1995.642

[19] J. Matoušek. Lectures on discrete geometry, volume 108. Springer New York, 2002.643

[20] J. Matoušek. Construction of epsilon nets. In Proceedings of SoCG, pages 1–10, New York,644

1989. ACM.645

[21] N. Megiddo. On the ball spanned by balls. Discrete & Computational Geometry, 4(1):605–646

610, 1989.647

[22] J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack and648

J. Urrutia, editors, Handbook of Computational Geometry, pages 633–701. Elsevier, 2000.649

[23] B. Nilsson and S. Schuierer. Computing the rectilinear link diameter of a polygon. In650

Proceedings of CG, pages 203–215, 1991.651

[24] B. Nilsson and S. Schuierer. An optimal algorithm for the rectilinear link center of a recti-652

linear polygon. Computational Geometry: Theory and Applications, 6:169–194, 1996.653

[25] R. Pollack, M. Sharir, and G. Rote. Computing the geodesic center of a simple polygon.654

Discrete & Computational Geometry, 4(1):611–626, 1989.655

[26] S. Suri. Minimum Link Paths in Polygons and Related Problems. PhD thesis, Johns Hopkins656

Univ., 1987.657

[27] S. Suri. Computing geodesic furthest neighbors in simple polygons. Journal of Computer658

and System Sciences, 39(2):220–235, 1989.659

[28] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48(436-452):137, 1941.660

19

A Bounding the VC dimension661

In this section we provide the proof of Lemma 6.3. That is, we want to prove that the set system662

(CR, ϕ) has constant VC-dimension. Recall that CR is a set of chords of P and ϕ is the set of all663

open 4-cells of P .664

Let A ⊆ CR be a subset of chords. We say that A is shattered by ϕ if each of the subsets of665

A can be obtained as the intersection of some Z ∈ ϕ with A, i.e., if for each σ ⊆ A, there exists666

Z ∈ ϕ such that σ = Z ∩ A. The VC-dimension of (CR, ϕ) is the supremum of the sizes of all667

finite shattered subsets of CR.668

Let H = {H : H is a half-polygon of P}. Because each 4-cell of P is the intersection of at669

most four half-polygons of P , the following result is a direct consequence of Proposition 10.3.3670

of [19, Chapter 10].671

Lemma A.1. If (CR,H) has VC-dimension d, then (CR, ϕ) has VC-dimension O(d).672

Let A be an arbitrary subset of CR such that |A| = κ for some constant κ > 6 to be determined673

later. Recall that if no subset of CR of size κ is shattered by H, then the VC-dimension of (CR,H)674

is at most κ− 1.675

By Lemma A.1, it suffices to show that A is not shattered by H to bound the VC-dimension676

of (CR,H) and hence of (CR, ϕ). We spend the remainder of this section proving that A is not677

shattered by H.678

A 6-cell is strict if it is defined as the intersection of six half-polygons, non of which are679

redundant, i.e., the removal of any of them modifies the 6-cell.680

Lemma A.2. If there are six chords of A supporting six half-polygons whose intersection defines681

a strict 6-cell σ, then A is not shattered by H.682

Proof. Let C1, . . . , C6 be the chords supporting the six half-polygons whose intersection defines683

σ. Assume that C1, . . . , C6 appear in these order when walking clockwise along the boundary of684

σ. Note that any half-polygon that intersects C1, C3 and C5 must intersect either C2, C4 or C6.685

Therefore, the set {C1, C3, C5} ⊆ A cannot be obtained as the intersection of some half-polygon686

H ∈ H with A. Consequently A is not shattered by H.687

Given two chords C1 and C2 of A, we say that C1 and C2 are separated if there exists a chord688

S ∈ A such that C1 and C2 lie on different open half-polygons supported by S. In this case, we689

say that S separates C1 from C2.690

Note that if A contains two chords C1 and C2 that are separated by a chord S, then any half-691

polygon that intersects both C1 and C2 must also intersect S. In this case, the subset {C1, C2}692

cannot be obtained as the intersection of a half-polygon H ∈ H with A, i.e., A is not shattered693

by H. Therefore, we assume from now on that no two chords of A are separated.694

Let GA be the intersection graph of A, i.e., the graph with vertex set A and an edge between695

two chords if they intersect. An Erdös-Szekeres type result from Harborth and Möller [13] shows696

that every arrangement of nine pseudo-lines determines a sub-arrangement with a hexagonal697

face. Thus, if GA has a clique of size nine, then this subset of chords is a set of pseudo-lines.698

Therefore, it contains a subset of 6 chords that define a strict 6-cell. In this case, Lemma A.2699

implies that A is not shattered by H. Consequently, we assume from now on that GA has no700

clique of size nine.701

Turán’s Theorem [28] states that if GA has no clique of size nine, then it has at most (7/16)κ2702

edges. Let C1 be the chord in A with the smallest degree in GA. Notice that C1 has degree at703

most 7κ/16. Therefore, there are at least 9κ/16 chords of A do not intersect C1. Consider the704

two half-polygons supported by C1 and note that one of them, say P ′, contains at least 9κ/32705

chords of A that do not intersect C1. Let A′ be the set containing these chords.706

20

Let G′A be subgraph of GA induced by A′ and let C2 be the chord of A′ with smallest degree707

in G′A. Because G′A has no clique of size nine, we infer that C2 has degree at most 7|A′|/16.708

Repeating the same argument, there is a set A′′ of at least 9|A′|/16 chords of A′ that intersect709

neither C2 nor C1. Because we assumed that no two chords of A are separated, all chords in A′′710

must be contained in the half-polygon supported by C2 that contains C1. Otherwise, C1 and711

some of these chords are separated by C2.712

Let G′′A be the subgraph of GA induced by A′′. Repeating the above procedure recursively713

on G′′A and A′′ four more times, we obtain a set C1, . . . , C6 of pairwise disjoint chords such714

that for each 1 ≤ i ≤ 6, C1, . . . , Ci−1 are contained in the same half-polygon supported by Ci.715

Consequently, the set {C1, . . . , C6} bounds a strict 6-cell.716

The above process can be applied as long as(
9

32

)(
9

16

)4

κ ≥ 1.

That is, as long as |A| ≥ 36 we can always find 6 such chords defining a strict 6-cell. In this717

case, Lemma A.2 implies that A is not shattered by H. Consequently, no set of 36 chord is718

shattered, i.e., the set system (CR,H) has VC-dimension at most 35. By Lemma A.1, we obtain719

the following result.720

I Lemma 6.3. The set system (CR, ϕ) has constant VC-dimension.721

21

	Introduction
	Previous Work
	Outline

	Decomposing the boundary
	Hourglasses
	Building hourglasses

	Funnels
	Funnels of marked vertices

	Covering the polygon with apexed triangles
	Inside a transition hourglass
	Inside the funnels of marked vertices

	Prune and search
	Finding the center within a triangle
	Optimization problem in a convex domain

	Further work
	Bounding the VC dimension

