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Abstract Let P be a set of points in the plane in general position. Any three points
x,y,z ∈ P determine a triangle ∆(x,y,z) of the plane. We say that ∆(x,y,z) is empty
if its interior contains no element of P. In this chapter, we study the following
problems: What is the size of the largest family of edge-disjoint triangles of a point
set? How many triangulations of P are needed to cover all the empty triangles of P?
We also study the following problem: What is the largest number of edge-disjoint
triangles of P containing a point q of the plane in their interior? We establish upper
and lower bounds for these problems.

1 Introduction

Let P be a set of n points in the plane in general position. A geometric graph on P
is a graph G whose vertices are the elements of P, two of which are adjacent if they
are joined by a straight-line segment. We say that G is a plane if it has no edges
that cross each other. A triangle of G consists of three points x,y,z ∈ P such that
xy, yz, and zx are edges of G; we will denote it as ∆(x,y,z). If, in addition, ∆(x,y,z)
contains no elements of P in its interior, we say that it is empty.
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In a similar way, we say that if x,y,z ∈ P, then ∆(x,y,z) is a triangle of P, and that
xy, yz, and zx are the edges of ∆(x,y,z). If ∆(x,y,z) is empty, it is called a 3-hole of
P. A 3-hole of P can be thought of as an empty triangle of the complete geometric
graph KP on P. We remark that ∆(x,y,z) will denote a triangle of a geometric graph
and also a triangle of a point set.

A well-known result in graph theory says that for n = 6k + 1 or n = 6k + 3,
the edges of the complete graph Kn on n vertices can be decomposed into a set
of
(n

2

)
/3 edge-disjoint triangles. These decompositions are known as Steiner triple

systems [23]; see also Kirkman’s schoolgirl problem [17, 22]. In this chapter, we
address some variants of that problem, but for geometric graphs.

Given a point set P, let δ (P) be the size of the largest set of edge-disjoint empty
triangles of P. It is easy to see that for point sets in convex position with n = 6k+1
or n = 6k+ 3 elements, δ (P) =

(n
2

)
/3. Indeed, any triangle of P is empty, and the

problem is the same as that of decomposing the edges of the complete geometric
graph K(P) on P into edge-disjoint triangles. On the other hand, we prove that for
some point sets, namely Horton point sets, δ (P) is O(n logn).

We then study the problem of covering the empty triangles of point sets with
as few triangulations of P as possible. For point sets in convex position, we prove
that we need essentially

(n
3

)
/4 triangulations; our bound is tight. We also show that

there are point sets P for which O(n logn) triangulations are sufficient to cover all
the empty triangles of P for a given point set P.

Finally, we consider the problem of finding a point q not in P contained in the
interior of many edge-disjoint triangles of P. We prove that for any point set, there
is a point q /∈ P contained in at least n2/12 edge-disjoint triangles. Furthermore, any
point in the plane, not in P, is contained in at most n2/9 edge-disjoint triangles of
P, and this bound is sharp. In particular, we show that this bound is attained when P
is the set of vertices of a regular polygon.

1.1 Preliminary Work

The study of counting and finding k-holes in point sets has been an active area of
research since Erdős and Szekeres [11, 12] asked about the existence of k-holes in
planar point sets. It is known that any point set with at least 10 points contains
5-holes; e.g., see [14]. Horton [15] proved that for k ≥ 7, there are point sets
containing no k-holes. The question of the existence of 6-holes remained open for
many years, but recently Nicolás [19] proved that any point set with sufficiently
many points contains a 6-hole. A second proof of this result was subsequently given
by Gerken [13].

The study of properties of the set of triangles generated by point sets on the plane
has been of interest for many years. Let fk(n) be the minimum number of k-holes
that a point set has. Katchalski and Meir [16] proved that

(n
2

)
≤ f3(n)≤ cn2 for some

c < 200; see also Purdy [21]. Their lower bounds were improved by Dehnhardt [9]
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to n2− 5n+ 10 ≤ f3(n). He also proved that
(n−3

2

)
+ 6 ≤ f4(n). Point sets with

few k-holes for 3 ≤ k ≤ 6 were obtained by Bárány and Valtr [2]. The interested
reader can read [18] for a more accurate picture of the developments in this area of
research.

Chromatic variants of the Erdős–Szekeres problem have recently been studied
by Devillers, Hurtado, Károly, and Seara [10]. They proved among other results
that any bichromatic point set contains at least n

4 − 2 compatible monochromatic
empty triangles. Aichholzer et al. [1] proved that any bichromatic point set always
contains Ω(n5/4) empty monochromatic triangles; this bound was improved by Pach
and Tóth [20] to Ω(n4/3).

2 Sets of Edge-Disjoint Empty Triangles in Point Sets

Let P be a set of points in the plane, and let δ (P) be the size of the largest set of
edge-disjoint empty triangles of the complete graph K(P) on P. In this section we
study the following problem:

Problem 1. How small can δ (P) be?

We show that if P is a Horton set, then δ (P) is O(n logn). By Kirkman’s result,

for points in convex position with n = 6k+ 1 and n = 6k+ 3, δ (P) is (n
3)
3 .

For any integer k ≥ 1, Horton [15] recursively constructed a family of point sets
Hk of size 2k as follows:

(a) H1 = {(0,0),(1,0)}.
(b) Hk consists of two subsets of points H−k−1 and H+

k−1 obtained from Hk−1 as
follows: If p = (i, j) ∈Hk−1, then p′= (2i, j) ∈H−k−1 and p′′ = (2i+1, j+dk)∈

H+
k−1

H−
k−1

Fig. 1 H4. The edges of H+
3 (respectively, H−3 ) visible from below (respectively, above), are

shown
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H+
k−1. The value dk is chosen large enough such that any line ℓ passing through

two points of H+
k−1 leaves all the points of H−k−1 below it; see Fig. 1.

We say that a line segment pq joining two elements p and q of Hk is visible from
below (respectively, above) if there is no point of Hk below it (respectively, above it);
that is there is no element r of Hk such that the vertical line through r intersects pq
above r (respectively, below r). Let B(Hk) be the set of line segments of Hk visible
from below. The following result, which we will use later, was proved by Bárány
and Valtr in [2]; see also [3]:

Lemma 1. |B(Hk)|= 2k+1− (k+ 2).

The following result is proved in [3] by using this lemma:

Theorem 1. For every n= 2k, k≥ 1, there is a point set (namely, Hk) such that there
is a geometric graph on Hk with

(n
2

)
−O(n logn) edges with no empty triangles.

In other words, it is always possible to remove O(n logn) edges from the
complete graph KHk in such a way that the remaining graph contains no empty
triangles. The main idea is that by removing from KHk all the edges of H+

k−1
(respectively, H−k−1) visible from below (respectively, above), no empty triangle
remains with vertices in both H+

k−1 and H−k−1.
Observe now that if a geometric graph has k edge-disjoint empty triangles, then

we need to take at least k edges away from G for the graph that remains to contain no
empty triangles. It follows now that the complete graph KHk has at most O(n logn)
edge-disjoint empty triangles. Thus, we have proved

Theorem 2. There is a point set, namely, Hk, such that any set of edge-disjoint
empty triangles of Hk contains at most O(n logn) elements.

Clearly, for any point set P, the size of the largest set of edge-disjoint triangles
of P is at least linear. We conjecture

Conjecture 1. Any point set P in general position always contains a set with at least
O(n logn) edge-disjoint empty triangles.

3 Covering the Triangles of Point Sets with Triangulations

An empty triangle t of a point set P is covered by a triangulation T of P if one of
the faces of T is t. In this section, we consider the following problem:

Problem 2. How many triangulations of a point set are needed such that each
empty triangle of P is covered by at least one triangulation?

This problem, which is interesting in its own right, will help us in finding point
sets for which δ (P) is large. We start by studying Problem 2 for point sets in convex
position, and then for point sets in general position.
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3.1 Points in Convex Position

All point sets P considered in this subsection will be assumed to be in convex
position, and their elements labeled {p0, . . . , pn−1} in counterclockwise order
around the boundary of CH(P). Since any triangulation of a point set of n points in
convex position corresponds to a triangulation of a regular polygon with n vertices,
solving Problem 2 for point sets in convex position is equivalent to solving it for
point sets whose elements are the vertices of a regular polygon. Suppose then that P
is the set of vertices of a regular polygon and that c is the center of such a polygon.

A triangle is called an acute triangle if all of its angles are smaller than π
2 . We

recall the following result in elementary geometry given without proof.

Observation 1. A triangle with vertices in P is acute if and only if it contains c in
its interior.

The following result is relatively well known.

Lemma 2. Let P be the set of vertices of a regular n-gon Q and c the center of Q.
Then

• If n is even, c is contained in the interior of 1
4

[(n
3

)
− n(n−2)

2

]
acute triangles of P.

• If n is odd, c is contained in
[(n

3

)
− n(n−1)(n−3)

8

]
= 1

4

[(n
3

)
+ n(n−1)

2

]
acute

triangles of P.

Let f (n) = 1
4

[(n
3

)
+ n(n−2)

2

]
for n even and f (n) = 1

4

[(n
3

)
+ n(n−1)

2

]
for n odd.

We now prove

Theorem 3. f (n) triangulations are always sufficient, and always necessary, to
cover all the triangles of a regular polygon.

Proof. Suppose first that n is even. For each vertex pi of P, let α(pi) = pi+ n
2

be the antipodal vertex of pi in P, where addition is taken mod n. Suppose that
∆(pi, p j, pk) is an acute triangle of P (i.e., it contains c in its interior), i < j < k. Let
t4(i, j,k) be the following set of four triangles:

t4(i, j,k) = {∆(pi, p j, pk),∆(α(pi), p j, pk),∆(pi,α(p j), pk),∆(pi, p j,α(pk))};

see Fig. 2a.
It is easy to see that all the triangles of P except those that have a right angle

are in
⋃

t4(i, j,k),

where i, j,k range over all triples such that ∆(pi, p j, pk) contains c in its interior.
On the other hand, it is easy to see that if a triangle t of P contains c in the middle

of one of its edges (clearly, t is a right triangle), this edge joins two antipodal vertices
of P; see Fig. 2b). Thus, we have exactly
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c
c

baFig. 2 (a) Constructing
t4(i, j,k), and (b) pairing
triangles sharing an edge,
which contains c in the
middle

n
2
× (n− 2)

such triangles. It is easy to find
n(n− 2)

4
triangulations of P such that each of them cover two of these triangles. Since each
triangulation of P contains exactly one acute triangle of P or two triangles sharing
an edge that contains c at its middle point, it follows that

1
4

[(
n
3

)
− n(n− 2)

2

]
+

n(n− 2)
4

=
1
4

[(
n
3

)
+

n(n− 2)
2

]

triangulations are necessary and sufficient to cover all the triangles of P. To show
that this number of triangulations is needed, we point out that any two acute triangles
of P cannot belong to the same triangulation (note that they intersect at c). Moreover,
these triangulations are different from those containing right triangles. Our result
follows.

A similar argument follows for n odd, except that some extra care has to be paid
to the way in which we group the nonacute triangles of P around the acute triangles
of P. ⊓(

Thus, the number of triangulations needed to cover all the triangles of P is
asymptotically

(n
3

)
/4. The next result follows trivially.

Corollary 1. Let P be a set of n points in convex position and p any point in the

interior of CH(P). Then p belongs to the interior of at most (
n
3)
4 +O(n2) triangles

of P.

3.2 Covering the Empty Triangles on the Horton Set

We will now show that all the empty triangles in Hk can be covered with O(n logn)
triangulations. The bound is tight.
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Depth = 3 Depth = 2 Depth = 1

Depth = 0

Fig. 3 The depth of an edge

Consider an edge e of Hk that is visible from below, and a vertical line ℓ that
intersects e at a point q in the interior of e. The depth of e is the number of edges
of Hk, visible from below, intersected by ℓ below q. It is not hard to see that the
maximal depth of an edge of Hk visible from below is at most logn−1 and that this
bound is tight; see Fig. 3. Moreover, it is easy to see that the union of all edges of
Hk with the same depth is an x-monotone path. Now we can prove

Theorem 4. Θ(n logn) triangulations of Hk are necessary and sufficient to cover
the set of empty triangles of Hk.

Proof. Consider the sets H+
k−1 and H−k−1. We will show how to cover all the

empty triangles of Hk with two vertices in H+
k−1 and one in H−k−1 with O(n logn)

triangulations. Label the elements of H−k−1 from left to right as p0, . . . , p n
2−1.

For each 0 ≤ d ≤ k− 1, proceed as follows: For every p j ∈ H−k−1, join p j to the
endpoints of all the edges of H+

k−1 of depth d. This gives us a set ID+
d, j of interior-

disjoint empty triangles. It is not hard to see that if (d, j) ̸= (d′, j′), then ID+
d, j ∩

ID+
d′, j′ = /0.
It is easy to see that the union of these sets covers all the empty triangles with

two vertices in H+
k−1 and one in H−k−1. In a similar way, cover all the triangles with

two vertices in H−k−1, and one in H+
k−1 with a family of sets ID−d, j.

Let ℓ1 be the straight line connecting the leftmost point in H+
k−1 to the rightmost

point in H−k−1, and ℓ2 the straight line that connects the rightmost point in H+
k−1 with

the leftmost point of H−k−1. Let q be a point slightly above the intersection point of
ℓ1 with ℓ2.

It is clear that for each ID+
d, j there is exactly one empty triangle that contains q in

its interior. This implies that q is contained in Ω(n logn) empty triangles, and thus
Ω(n logn) triangulations are necessary to cover all the empty triangles in Hk.

Now we show that O(n logn) of Hk triangulations are sufficient. Consider each
set ID+

d, j and ID−d, j, and complete it to a triangulation. This gives us O(n logn)
triangulations that cover all the triangles with vertices in both H+

k−1 and H−k−1.
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Take a set of triangulations T +
k−1 = {T+

1 , . . . ,T+
m } of H+

k−1 that covers all of
its empty triangles. Since H+

k−1 and H−k−1 are isomorphic, we can find a set of
triangulations T −k−1 = {T−1 , . . . ,T−m } of H−k−1 that covers all the empty triangles of
H−k−1 such that T+

i is isomorphic to T−i . For each i, we can find a triangulation Ti of
Hk that contains T+

i and T−i as induced subgraphs.
Thus, if T (n) is the number of triangulations required to cover the empty triangles

of Hk, the following recurrence holds for n = 2k:

T (n) = T
(n

2

)
+O(n logn).

This solves to T (n) = O(n logn), and our result follows. ⊓(

We conclude this section with the following conjecture.

Conjecture 2. At least Ω(n logn) triangulations are needed to cover all the empty
triangles of any point set with n points.

4 A Point in Many Edge-Disjoint Triangles

The problem of finding a point contained in many triangles of a point set was solved
by Boros and Füredi [4]; see also Bukh [6]. They proved

Theorem 5. For any set P of n points in general position, there is a point in the
interior of the convex hull of P contained in 2

9

(n
3

)
+O(n2) triangles of P. The bound

is tight.

We now study a variant to this problem, in which we are interested in finding a point
in many edge-disjoint triangles. We consider the following.

Problem 3. Let P be a set of points in the plane in general position, and q ̸∈ P a
point of the plane. What is the largest number of edge-disjoint triangles of P such
that q belongs to the interior of all of them?

We start by giving some preliminary results, and then we study Problem 3 for
point sets in general position and sets of vertices of regular polygons.

Given a point set P, and a point q not in P, let T (P,q) [or T (q) for short] be the
set of triangles of P that contain q. We define the graph G(P,q) whose vertex set is
T (q) in which two triangles are adjacent if they share an edge; see Fig. 4. We may
assume that q does not belong to any line passing through two elements of P. We
now prove

Lemma 3. The degree of every vertex of G(P,q) is exactly n− 3.

Proof. Let ∆(x,y,z) be a triangle that contains q in its interior. Let p be any point
in P \ {x,y,z}. Then exactly one of the triangles ∆(x,y, p), ∆(x, p,z), or ∆(p,y,z)
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q

p0

p1

p2

p3

p4

∆(p0,p1,p3) ∆(p0,p1,p2)

∆(p0,p1,p4)∆(p0,p3,p4)

Fig. 4 G(P,q)

q

x

y

z

p

Fig. 5

contains q; see Fig. 5. That is, exactly one of ∆(x,y, p), ∆(x, p,z), or ∆(p,y,z)
belongs to T (q). Our result follows. ⊓(

Observe now that finding sets of edge-disjoint triangles that contain q is
equivalent to finding independent sets in G(P,q). Let τ(P,q) (or τ(q) for short) be
the largest number of edge-disjoint triangles on P containing q. We now prove

Lemma 4.
|T (q)|
n− 2

≤ τ(q)≤ 3|T (q)|
n

.

Proof. It follows from Lemma 3 that the size of the largest independent set of
G(P,q) is at least |T (q)|

n−2 . To prove our upper bound, it is sufficient to observe that if
a vertex of G(P,q) is not in an independent set I of G(P,q), then it is adjacent to at
most three vertices in it, one per each of its edges. Hence, by counting the number
of edges connecting a vertex in I to another in T (q)\ I, we obtain

(n− 3)|I|≤ 3|T (q)\ I|.

Our result follows. ⊓(

From Theorem 5 and Lemma 4, it is easy to see that in any set of n points in general
position on the plane, there is a point q such that

n2

27
+O(n)≈

2
9

(n
3

)
+O(n2)

n− 2
≤ τ(q)≤

3 · 2
9

(n
3

)
+O(n2)

n
≈ n2

9
+O(n).
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l
∗

P5

P5

P0
P0

P3

P4P4

P3

P2

P2

P1

P1

l
∗

qq

a b

l2l2

l1

l0
l0

l1

Fig. 6 Partitions of P

Thus, we have

Corollary 2. For any point set in general position on the plane, there is a point q
such that τ(q)≤ n2

9 +O(n).

We now prove an even stronger result. We now prove

Proposition 1. Let P a set of n points in general position on the plane. Then for
any point q /∈ P of the plane, τ(q)≤ n2/9.

Proof. Let q /∈ P be any point of the plane. If q is on a straight line passing through
two elements of P, then by slightly moving it, q could be moved to a position in
which it is contained in more edge-disjoint triangles. Thus, assume that q is not on
any straight line through two elements of P.

First, we show the following lemma:

Lemma 5. There exist three straight lines passing through q such that they partition
P into six subsets P0,P1, . . . ,P5 in counterclockwise order around q, with |P0| =
|P2|= |P4| (we allow the possibility that Pi = /0 for some i).

Proof. Let l0 be a straight line passing through q such that one of the half-planes
bounded by l0, say the one on top of it, contains an even number of elements of P.
Take other straight lines l1 and l2 passing through q, and define the subsets Pi of P,
0 ≤ i≤ 5, as shown in Fig. 6a, where |P0∪P1∪P2| is even. Let l∗ be a straight line
passing through q, equipartitioning the elements of P0∪P1∪P2.

Choose l1 and l2 such that initially |P0|= |P2|= |P3|= |P5|= 0. From their initial
positions, rotate l1 counterclockwise and l2 clockwise around q in such a way that
P0 and P2 always contain the same number of elements, and until they both reach
the position of l∗ at the same time, and the boundary of P4 always contains no more
than one element of P.

Initially, |P4|≥ 0 = |P0|. On the other hand, we have |P4|= 0≤ |P0| when l1 and
l2 reach the position of l∗. Hence, at some point while rotating l1 and l2, we have
that |P0|= |P2|= |P4|; see Fig. 6b. ⊓(
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P0

P1

P2
P3

P4

P5q

P0

P1

P2
P3

P4

P5q

P0

P1

P2
P3

P4

P5q

P0

P1

P2
P3

P4

P5q

a b c d

Fig. 7 Triangles in the Ti jk’s

Let P0,P1, . . . ,P5 be as in Lemma 5. Write |Pi| = ni for 0 ≤ i≤ 5 (we have n0 =
n2 = n4). We henceforth read indices modulo 6. Let T be a set of edge-disjoint
triangles with vertices in P, containing q in its interior. For integers i, j,k, let Ti jk
denote the set of elements of T such that it has one vertex in Pi, another in Pj and
the other in Pk, and let ti jk = |Ti jk|; see Fig. 7.

Then

T=
[
∪5

i=0Tii(i+3)

]
∪
[
∪5

i=0Ti(i+1)(i+3)

]
∪
[
∪5

i=0Ti(i+1)(i+4)

]
∪
[
∪5

i=0Ti(i+2)(i+4)

]

=
[
∪5

i=0Tii(i+3)

]
∪
[
∪5

i=0Ti(i+2)(i+5)

]
∪
[
∪5

i=0Ti(i+2)(i+3)

]
∪
[
∪5

i=0Ti(i+2)(i+4)

]
.

For integers i, j, let Ei j denote the set of all segments connecting an element of
Pi and another of Pj. Then for each integer i, |Ei(i+2)| = nini+2 and Ti(i+2)(i+3) ∪
Ti(i+2)(i+4) ∪ Ti(i+2)(i+5) is the set of elements of T that has a side belonging to
Ei(i+2). Hence, we have

f (i) ≡ ti(i+2)(i+3) + ti(i+2)(i+4)+ ti(i+2)(i+5) ≤ nini+2 (1)

for each i. Similarly, by considering the cardinality of Ei(i+3), we obtain

g(i) ≡ 2tii(i+3) + ti(i+1)(i+3)+ ti(i+2)(i+3)

+2ti(i+3)(i+3)+ ti(i+3)(i+4) + ti(i+3)(i+5) ≤ nini+3 (2)

for each i. By (1) and (2), we have

5

∑
i=0

f (i)+ 2
2

∑
i=0

g(i)≤
5

∑
i=0

nini+2 + 2
2

∑
i=0

nini+3. (3)

Since g(i) = (ti(i+2)(i+3) + t j( j+2)( j+3)) + (t j′( j′+2)( j′+5) + t j′′( j′′+2)( j′′+5)) +
2(tii(i+3) + t j j( j+3)), where j = i+ 3, j′ = i+ 1, j′′ = j′+ 3,

5

∑
i=0

f (i)+ 2
2

∑
i=0

g(i) =
5

∑
i=0

(ti(i+2)(i+3) + ti(i+2)(i+4)+ ti(i+2)(i+5))

+2
5

∑
i=0

(ti(i+2)(i+3) + ti(i+2)(i+5))+ 4
5

∑
i=0

tii(i+3)

= 3|T |+
5

∑
i=0

tii(i+3) ≥ 3|T |. (4)
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x

n/3 points

n/3 pointsn/3 points

5 points

points5points5

4 points

4 points 4 points

q

a b

Fig. 8 A vertex set of a regular 27-gon

On the other hand, if we denote the right-hand side of (3) by S,

S = (n0n2 + n2n4 + n4n0)+ (n1n3 + n3n5 + n5n1)

+2(n0n3 + n2n5 + n4n1)

=
l2

3
+

2lm
3

+(n1n3 + n3n5 + n5n1), (5)

where l = n0+n2+n4 (recall that n0 = n2 = n4) and m = n1+n3+n5. Since n1n3+
n3n5 +n5n1 = [m2− (n2

1 +n2
3 +n2

5)]/2 and since n2
1 +n2

3 +n2
5 ≥ m2/3 with equality

if and only if n1 = n3 = n5, we have n1n3 +n3n5 +n5n1 ≤m2/3. From this and (5),
it follows that

S≤ l2

3
+

2lm
3

+
m2

3
=

(l +m)2

3
=

n2

3
. (6)

Now combining (3), (4) and (6), we obtain |T |≤ n2/9, as desired. ⊓(

To achieve the equality, it is necessary that n0 = n2 = n4 and n1 = n3 = n5 for
some partition (Fig. 8).

We now prove

Proposition 2. Let n be a positive integer and P a set of n points in general position
on the plane. Then there exists a point q on the plane such that τ(q)≥ n2

12 .

Proof. We use the following lemma, which was proved by Ceder [7] (see also [5])
and applied by Bukh [6] to obtain a lower bound of maxq |T (q)| for given P:

Lemma 6. There exist three straight lines such that they intersect at a point q and
partition the plane into six open regions each of which contains at least n/6− 1
elements of P.
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ti

si

q

P0

P1

P2

P3

P4

P5

p

p'

e

Fig. 9 Matching Mi (bold
lines) and triangles using
edges of Mi

Let q be as in Lemma 6. We may assume that q is not on any straight line passing
through two elements of P. Let m = ⌈n/6⌉−1 and denote by D0,D1, . . . ,D5 the six
regions in counterclockwise order around q. For each 0≤ i≤ 5, let Pi be a subset of
P∩Di with |Pi|= m; see Fig. 9.

Now consider the geometric complete bipartite graph with vertex set P0∪P3 and
edge set E = {pp′ | p ∈ P0, p′ ∈ P3}. As a consequence of a well-known result in
graph theory, E can be decomposed into m subsets Mi, 0 ≤ i ≤ m− 1, such that
each Mi is a perfect matching, i.e., consisting of m independent edges. Let P1 =
{s1,s2, . . . ,sm} and P4 = {t1, t2, . . . , tm}. For each i and each element e = pp′ ∈Mi,
where p∈P0 and p′ ∈P3, let ui denote either si or ti according to whether pp′ ∩D1 =
/0 or pp′ ∩D4 = /0. Then△(p, p′,ui) contains q in its interior. Observe that all of the
m triangles in Ti = {△(p, p′,ui) |e = pp′ ∈Mi} are edge-disjoint, and all of the m2

triangles in T03 = ∪m
i=0Ti are edge-disjoint as well.

Define the sets T14 and T25 of triangles similarly (the elements of T14 are triangles
with one vertex in P1, another in P4, and the other in P2∪P5, while the elements of
T25 are triangles with one vertex in P2, another in P5, and the other in P3 ∪P0). It
can be observed that all of the 3m2 = n2/12−O(n) triangles in T03∪T14 ∪T25 are
edge-disjoint. ⊓(

Thus by using Corollary 2, Proposition 1, and Proposition 2, we have

Theorem 6. In any point set in general position, there is a point q such that n2

12 ≤
τ(q)≤ n2

9 . Moreover, for any q, τ(q)≤ n2

9 .

4.1 Regular Polygons

By Theorem 6, any point in the interior of the convex hull of a point set is contained
in at most n2/9 edge-disjoint triangles of P. It is also easy to construct point sets
for which that bound is tight; see Fig. 8a). In fact, the point sets in that figure can be
chosen in convex position.
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Fig. 10 (a) The triple (1,2,3), and p0 determine ∆(p0 , p2, p5). (b) S(1,2,3) is obtained by rotating
∆(p0, p2, p5), obtaining a set of 9 edge-disjoint triangles

We now show that the bound in Theorem 6 is also achieved when P is the set
of vertices of a regular polygon. We found proving this result to be a challenging
problem. In what follows, we will assume that n = 9m, m≥ 1.

Let (ai,bi,ci) be an ordered set of integers. We call (ai,bi,ci) a triangular triple
if it satisfies the following conditions:

(a) ai, bi, and ci are all different,
(b) ai + bi+ ci = n− 3, and
(c) 1≤ ai,bi,ci ≤ n−3

2 .

Observe that for any vertex pr of P, a triangular triple (ai,bi,ci), defines a
triangle ∆(pr, pr+ai+1, pr+ai+bi+2) of P. Moreover, condition c) above ensures that
∆(pr, pr+ai+1, pr+ai+bi+2) is acute, and hence it contains the center c of P. Note
that since ai + bi + ci = n− 3, pr = pr+ai+bi+ci+3, addition taken mod n. Thus, the
edges of ∆(pr, pr+ai+1, pr+ai+bi+2) skip ai, bi, and ci vertices of P, respectively; see
Fig. 10a.

Let S(ai,bi,ci) = {∆(pr, pr+ai+1, pr+ai+bi+2) : pr ∈ P}. The set S(ai,bi,ci) can be
seen as the set of triangles obtained by rotating ∆(p0, p0+ai+1, p0+ai+bi+2) around
the center of P; see Fig. 10b. The next observation will be useful.

Observation 2. Let (ai,bi,ci) and (a j,b j,c j) be triangular triples of P such that
{ai,bi,ci} ∩ {a j,b j,c j} = /0, i ̸= j. Then all of the triangles in S(ai,bi,ci) ∪
S(a j,b j,c j) are edge-disjoint.

Consider a set C = {(a0,b0,c0), . . . ,(ak−1,bk−1,ck−1)} of ordered triangular
triples. We say that C is a generating set of triangular triples if the following
condition holds:

{ai,bi,ci}∩{a j,b j,c j}= /0, i ̸= j.
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(4, 8, 12)
(5, 9, 10)
(6, 7, 11)

(10, 22, 28)
(11, 20, 29)
(12, 18, 30)
(13, 23, 24)
(14, 21, 25)
(15, 19, 26)
(16, 17, 27)

(13, 29, 36)
(14, 27, 37)
(15, 25, 38)
(16, 23, 39)
(17, 30, 31)
(18, 28, 32)
(19, 26, 33)
(20, 24, 34)
(21, 22, 35)

(16, 36, 44)
(17, 34, 45)
(18, 32, 46)
(19, 30, 47)
(20, 28, 48)
(21, 37, 38)
(22, 35, 39)
(23, 33, 40)
(24, 31, 41)
(25, 29, 42)
(26, 27, 43)

( 7, 15, 20)
( 8, 13, 21)
( 9, 16, 17)
(10, 14, 18)
(11, 12, 19)

Fig. 11 Triangular triples for n = 27,45,63,81 and 99

Note that |S(ai,bi,ci)|= n, and thus

⋃

(ai,bi,ci)∈C

S(ai,bi,ci)

contains nk edge-disjoint triangles containing the center P. Our task is now that of
finding a generating set of as many triangular triples as possible.

Theorem 7. Let P be the set of vertices of a regular polygon with n = 9m vertices,
and let c be its center. Then if m is odd, then |τ(c)| ≥ n2

9 , and if m is even, then

|τ(c)|≥ n2

9 − n.

Proof. The proof when m is odd proceeds by constructing a generating set C with n
9

triangular triples. Let k = 9m−3
6 and k′ = k+2m−1. Given i ∈ {0,1, . . . ,m−1}, we

define the ith ordered triple (ai,bi,ci) as follows (see Fig. 11):

ai = k+ i,

bi =

{
k′ − 2i− 1 if i < m−1

2 ,
k′ − 2i+m− 1 if i≥ m−1

2 ,

ci =

{
k′+ i+ 1+ m+1

2 if i < m−1
2 ,

k′+ i+ 1− m−1
2 if i≥ m−1

2 .

We now prove that the triples (ai,bi,ci) are triangular; that is, ai+bi+ci = n−3.
Since bi + ci = 2k′ − i+ m+1

2 for all i,

ai + bi+ ci = k+ 2k′+
m+ 1

2
= 9m− 3.
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c

a bFig. 12 (a) Triangular triples
(ai,bi,ci) for n = 9 ·3 = 27
and (b) triples (a′i,b

′
i,c
′
i) =

(ai−3,bi−3,ci−3) for
n = 9 ·2 = 18

It is easy to see that

k ≤ ai ≤ k+m− 1,
k+m = k′ −m+ 1≤ bi ≤ k′,

k′+ 1≤ ci.

Therefore, ai < b j < ck for every i, j,k. Also, by construction it can be verified that
ai ̸= a j, bi ̸= b j, and ci ̸= c j for every i ̸= j.

Thus, the set
⋃

(ai,bi,ci)∈C

{ai,bi,ci} contains no repeated elements.

Finally, note that the maximum value that can be reached by ci occurs when
i = m−3

2 , and thus,

ci ≤ k′+ 1+
m− 3

2
+

m+ 1
2

= k′+m =
9m− 3

2
.

Therefore, C is a generating set of triangular triples. Thus, c is contained in at
least n2

9 edge-disjoint triangles.
The proof when m is even proceeds by also constructing a set of m triples. We

use the set of triples just constructed for m+ 1 and modify it as follows: Suppose
that the set of m+ 1 triples is {(a0,b0,c0), . . . ,(am,bm,cm)}.

Let a′i = ai− 3, b′i = bi− 3, and c′i = ci− 3, and consider C′ = {(a′i,b′i,c′i) | 0 ≤
i≤ m}. C′ induces a set of triangles in P. Nevertheless, 2n triangles do not contain
the point c in their interior; see Fig. 12. Therefore, this construction guarantees that
c is contained in at least (m+ 1)n− 2n= n2

9 − n edge-disjoint triangles. ⊓(

5 A Point in Many Edge-Disjoint Empty Triangles

We conclude our chapter by briefly studying the problem of the existence of a point
contained in many edge-disjoint empty triangles of a point set. We point out that if
we are interested only in empty triangles containing a point, it is easy to see that
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for any point set P, there is always a point q contained in a linear number of (not
necessarily edge-disjoint) empty triangles. This follows directly from the following
facts:

1. Any point set P with n elements always determines at least a quadratic number
of empty triangles [2, 16].

2. We can always choose 2n−c−2 points in the plane such that any empty triangle
of P contains one of them, where c is the number of vertices of the convex hull
of P; see [8, 16].

We now prove

Theorem 8. There are point sets P such that every q /∈ P is contained in at most a
linear number of empty edge-disjoint triangles of P.

Proof. Let Hk, H+
k−1, and H−k−1 be as defined in Sect. 2. Consider any set T+

k
(respectively, T−k ) of empty edge-disjoint triangles such that each of them has two
vertices in H+

k−1 (respectively, H−k−1) and the other in H−k−1 (respectively, H+
k−1). Let

t ∈ T+
k . Then the edge of t with both endpoints in H+

k−1 is an edge of H+
k−1 visible

from below. Since the triangles in T+
k are edge-disjoint, the number of elements of

T+
k is at most the number of edges of H+

k−1 visible from below, which is a linear
function in n. Thus, |T+

k | ∈ O(n). Similarly, we can prove that |T−k | ∈O(n).
Consider a point q ∈ CH(Hk) \ CH(H+

k−1) ∪ CH(H−k−1). Clearly, any empty
triangle containing q belongs to some T+

k ∪ T−k , and thus it belongs to at most a
linear number of edge-disjoint triangles of Hk.

Suppose next that q∈CH(H+
k−1)∪CH(H−k−1). Suppose without loss of generality

that q ∈ CH(H+
k−1) and that q belongs to a set S of edge-disjoint triangles of Hk. S

may contain some triangles with vertices in both of H+
k−1 and H−k−1. There are at

most a linear number of such triangles. The remaining elements in S have all of their
vertices in H+

k−1. Thus, the number of edge-disjoint triangles containing q satisfies

T (n)≤ T
(n

2

)
+Θ(n),

and thus q belongs to at most a linear number of edge-disjoint triangles.
The first part of our result follows. To show that our bound is tight, let q be as

in the proof of Theorem 4. It is easy to see that q belongs to a linear number of
triangles with vertices in both H+

k and H−k , and our result follows. ⊓(

We conclude with the following.

Conjecture 3. Let P be a set of n points in general position on the plane. Then
there is always a point q /∈ P on the plane such that it is contained in at least logn
edge-disjoint triangles of P.
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4. E. Boros, Z. Füredi, The number of triangles covering the center of an n-set. Geom. Dedicata
17, 69–77 (1984)

5. R. Buck, E. Buck, Equipartitions of convex sets. Math. Mag. 22, 195–198 (1949)
6. B. Bukh, A point in many triangles. Electron. J. Comb. 13(10) (2006)
7. J. Ceder, Generalized sixpartite problems. Bol. Soc. Math. Mexicana 2, 28–32 (1964)
8. J. Czyzowicz, E. Kranakis, J. Urrutia, Guarding the convex subsets of a point set, in

Proceedings of the 12th Canadian Conference on Computational Geometry, 2000, New
Brunswick, Canada, pp. 47–50

9. K. Dehnhardt, Leere konvexe Vielecke in ebenen Punktmengen. Dissertation, TU Braun-
schweig, 1987

10. O. Devillers, F. Hurtado, G. Károlyi, C. Seara, Chromatic variants of the Erdős–Szekeres
theorem. Comput. Geom. Theor. Appl. 26(3), 193–208 (2003)

11. P. Erdős, Some more problems on elementary geometry. Aust. Math. Soc. Gaz. 5, 52–54
(1978)
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