On Edge-Disjoint Empty Triangles of Point Sets

Javier Cano, Luis F. Barba, Toshinori Sakai, and Jorge Urrutia

Abstract

Let P be a set of points in the plane in general position. Any three points $x, y, z \in P$ determine a triangle $\Delta(x, y, z)$ of the plane. We say that $\Delta(x, y, z)$ is empty if its interior contains no element of P. In this chapter, we study the following problems: What is the size of the largest family of edge-disjoint triangles of a point set? How many triangulations of P are needed to cover all the empty triangles of P ? We also study the following problem: What is the largest number of edge-disjoint triangles of P containing a point q of the plane in their interior? We establish upper and lower bounds for these problems.

1 Introduction

Let P be a set of n points in the plane in general position. A geometric graph on P is a graph G whose vertices are the elements of P, two of which are adjacent if they are joined by a straight-line segment. We say that G is a plane if it has no edges that cross each other. A triangle of G consists of three points $x, y, z \in P$ such that $x y, y z$, and $z x$ are edges of G; we will denote it as $\Delta(x, y, z)$. If, in addition, $\Delta(x, y, z)$ contains no elements of P in its interior, we say that it is empty.

[^0]In a similar way, we say that if $x, y, z \in P$, then $\Delta(x, y, z)$ is a triangle of P, and that $x y, y z$, and $z x$ are the edges of $\Delta(x, y, z)$. If $\Delta(x, y, z)$ is empty, it is called a 3-hole of P. A 3-hole of P can be thought of as an empty triangle of the complete geometric graph \mathcal{K}_{P} on P. We remark that $\Delta(x, y, z)$ will denote a triangle of a geometric graph and also a triangle of a point set.

A well-known result in graph theory says that for $n=6 k+1$ or $n=6 k+3$, the edges of the complete graph K_{n} on n vertices can be decomposed into a set of $\binom{n}{2} / 3$ edge-disjoint triangles. These decompositions are known as Steiner triple systems [23]; see also Kirkman's schoolgirl problem [17, 22]. In this chapter, we address some variants of that problem, but for geometric graphs.

Given a point set P, let $\delta(P)$ be the size of the largest set of edge-disjoint empty triangles of P. It is easy to see that for point sets in convex position with $n=6 k+1$ or $n=6 k+3$ elements, $\delta(P)=\binom{n}{2} / 3$. Indeed, any triangle of P is empty, and the problem is the same as that of decomposing the edges of the complete geometric graph $\mathcal{K}(P)$ on P into edge-disjoint triangles. On the other hand, we prove that for some point sets, namely Horton point sets, $\delta(P)$ is $O(n \log n)$.

We then study the problem of covering the empty triangles of point sets with as few triangulations of P as possible. For point sets in convex position, we prove that we need essentially $\binom{n}{3} / 4$ triangulations; our bound is tight. We also show that there are point sets P for which $O(n \log n)$ triangulations are sufficient to cover all the empty triangles of P for a given point set P.

Finally, we consider the problem of finding a point q not in P contained in the interior of many edge-disjoint triangles of P. We prove that for any point set, there is a point $q \notin P$ contained in at least $n^{2} / 12$ edge-disjoint triangles. Furthermore, any point in the plane, not in P, is contained in at most $n^{2} / 9$ edge-disjoint triangles of P, and this bound is sharp. In particular, we show that this bound is attained when P is the set of vertices of a regular polygon.

1.1 Preliminary Work

The study of counting and finding k-holes in point sets has been an active area of research since Erdős and Szekeres $[11,12]$ asked about the existence of k-holes in planar point sets. It is known that any point set with at least 10 points contains 5-holes; e.g., see [14]. Horton [15] proved that for $k \geq 7$, there are point sets containing no k-holes. The question of the existence of 6-holes remained open for many years, but recently Nicolás [19] proved that any point set with sufficiently many points contains a 6-hole. A second proof of this result was subsequently given by Gerken [13].

The study of properties of the set of triangles generated by point sets on the plane has been of interest for many years. Let $f_{k}(n)$ be the minimum number of k-holes that a point set has. Katchalski and Meir [16] proved that $\binom{n}{2} \leq f_{3}(n) \leq c n^{2}$ for some $c<200$; see also Purdy [21]. Their lower bounds were improved by Dehnhardt [9]
to $n^{2}-5 n+10 \leq f_{3}(n)$. He also proved that $\binom{n-3}{2}+6 \leq f_{4}(n)$. Point sets with few k-holes for $3 \leq k \leq 6$ were obtained by Bárány and Valtr [2]. The interested reader can read [18] for a more accurate picture of the developments in this area of research.

Chromatic variants of the Erdős-Szekeres problem have recently been studied by Devillers, Hurtado, Károly, and Seara [10]. They proved among other results that any bichromatic point set contains at least $\frac{n}{4}-2$ compatible monochromatic empty triangles. Aichholzer et al. [1] proved that any bichromatic point set always contains $\Omega\left(n^{5 / 4}\right)$ empty monochromatic triangles; this bound was improved by Pach and Tóth [20] to $\Omega\left(n^{4 / 3}\right)$.

2 Sets of Edge-Disjoint Empty Triangles in Point Sets

Let P be a set of points in the plane, and let $\delta(P)$ be the size of the largest set of edge-disjoint empty triangles of the complete graph $\mathcal{K}(P)$ on P. In this section we study the following problem:
Problem 1. How small can $\delta(P)$ be?
We show that if P is a Horton set, then $\delta(P)$ is $O(n \log n)$. By Kirkman's result, for points in convex position with $n=6 k+1$ and $n=6 k+3, \delta(P)$ is $\frac{\binom{n}{3}}{3}$.

For any integer $k \geq 1$, Horton [15] recursively constructed a family of point sets H_{k} of size 2^{k} as follows:
(a) $H_{1}=\{(0,0),(1,0)\}$.
(b) H_{k} consists of two subsets of points H_{k-1}^{-}and H_{k-1}^{+}obtained from H_{k-1} as follows: If $p=(i, j) \in H_{k-1}$, then $p^{\prime}=(2 i, j) \in H_{k-1}^{-}$and $p^{\prime \prime}=\left(2 i+1, j+d_{k}\right) \in$

Fig. $1 H_{4}$. The edges of H_{3}^{+}(respectively, H_{3}^{-}) visible from below (respectively, above), are shown
H_{k-1}^{+}. The value d_{k} is chosen large enough such that any line ℓ passing through two points of H_{k-1}^{+}leaves all the points of H_{k-1}^{-}below it; see Fig. 1 .

We say that a line segment $p q$ joining two elements p and q of H_{k} is visible from below (respectively, above) if there is no point of H_{k} below it (respectively, above it); that is there is no element r of H_{k} such that the vertical line through r intersects $p q$ above r (respectively, below r). Let $B\left(H_{k}\right)$ be the set of line segments of H_{k} visible from below. The following result, which we will use later, was proved by Bárány and Valtr in [2]; see also [3]:
Lemma 1. $\left|B\left(H_{k}\right)\right|=2^{k+1}-(k+2)$.
The following result is proved in [3] by using this lemma:
Theorem 1. For every $n=2^{k}, k \geq 1$, there is a point set (namely, H_{k}) such that there is a geometric graph on H_{k} with $\binom{n}{2}-O(n \log n)$ edges with no empty triangles.

In other words, it is always possible to remove $O(n \log n)$ edges from the complete graph $\mathcal{K}_{H_{k}}$ in such a way that the remaining graph contains no empty triangles. The main idea is that by removing from $\mathcal{K}_{H_{k}}$ all the edges of H_{k-1}^{+} (respectively, H_{k-1}^{-}) visible from below (respectively, above), no empty triangle remains with vertices in both H_{k-1}^{+}and H_{k-1}^{-}.

Observe now that if a geometric graph has k edge-disjoint empty triangles, then we need to take at least k edges away from G for the graph that remains to contain no empty triangles. It follows now that the complete graph $\mathcal{K}_{H_{k}}$ has at most $O(n \log n)$ edge-disjoint empty triangles. Thus, we have proved

Theorem 2. There is a point set, namely, H_{k}, such that any set of edge-disjoint empty triangles of H_{k} contains at most $O(n \log n)$ elements.

Clearly, for any point set P, the size of the largest set of edge-disjoint triangles of P is at least linear. We conjecture

Conjecture 1. Any point set P in general position always contains a set with at least $O(n \log n)$ edge-disjoint empty triangles.

3 Covering the Triangles of Point Sets with Triangulations

An empty triangle t of a point set P is covered by a triangulation T of P if one of the faces of T is t. In this section, we consider the following problem:

Problem 2. How many triangulations of a point set are needed such that each empty triangle of P is covered by at least one triangulation?

This problem, which is interesting in its own right, will help us in finding point sets for which $\delta(P)$ is large. We start by studying Problem 2 for point sets in convex position, and then for point sets in general position.

3.1 Points in Convex Position

All point sets P considered in this subsection will be assumed to be in convex position, and their elements labeled $\left\{p_{0}, \ldots, p_{n-1}\right\}$ in counterclockwise order around the boundary of $\mathrm{CH}(P)$. Since any triangulation of a point set of n points in convex position corresponds to a triangulation of a regular polygon with n vertices, solving Problem 2 for point sets in convex position is equivalent to solving it for point sets whose elements are the vertices of a regular polygon. Suppose then that P is the set of vertices of a regular polygon and that c is the center of such a polygon.

A triangle is called an acute triangle if all of its angles are smaller than $\frac{\pi}{2}$. We recall the following result in elementary geometry given without proof.

Observation 1. A triangle with vertices in P is acute if and only if it contains c in its interior.

The following result is relatively well known.
Lemma 2. Let P be the set of vertices of a regular n-gon Q and c the center of Q. Then

- If n is even, c is contained in the interior of $\frac{1}{4}\left[\binom{n}{3}-\frac{n(n-2)}{2}\right]$ acute triangles of P.
- If n is odd, c is contained in $\left[\binom{n}{3}-\frac{n(n-1)(n-3)}{8}\right]=\frac{1}{4}\left[\binom{n}{3}+\frac{n(n-1)}{2}\right]$ acute triangles of P.
Let $f(n)=\frac{1}{4}\left[\binom{n}{3}+\frac{n(n-2)}{2}\right]$ for n even and $f(n)=\frac{1}{4}\left[\binom{n}{3}+\frac{n(n-1)}{2}\right]$ for n odd. We now prove

Theorem 3. $f(n)$ triangulations are always sufficient, and always necessary, to cover all the triangles of a regular polygon.

Proof. Suppose first that n is even. For each vertex p_{i} of P, let $\alpha\left(p_{i}\right)=p_{i+\frac{n}{2}}$ be the antipodal vertex of p_{i} in P, where addition is taken mod n. Suppose that $\Delta\left(p_{i}, p_{j}, p_{k}\right)$ is an acute triangle of P (i.e., it contains c in its interior), $i<j<k$. Let $t_{4}(i, j, k)$ be the following set of four triangles:

$$
t_{4}(i, j, k)=\left\{\Delta\left(p_{i}, p_{j}, p_{k}\right), \Delta\left(\alpha\left(p_{i}\right), p_{j}, p_{k}\right), \Delta\left(p_{i}, \alpha\left(p_{j}\right), p_{k}\right), \Delta\left(p_{i}, p_{j}, \alpha\left(p_{k}\right)\right)\right\}
$$

see Fig. 2a.
It is easy to see that all the triangles of P except those that have a right angle are in

$$
\bigcup t_{4}(i, j, k)
$$

where i, j, k range over all triples such that $\Delta\left(p_{i}, p_{j}, p_{k}\right)$ contains c in its interior.
On the other hand, it is easy to see that if a triangle t of P contains c in the middle of one of its edges (clearly, t is a right triangle), this edge joins two antipodal vertices of P; see Fig. 2b). Thus, we have exactly

Fig. 2 (a) Constructing $t_{4}(i, j, k)$, and (b) pairing triangles sharing an edge, which contains c in the middle

such triangles. It is easy to find

$$
\frac{n(n-2)}{4}
$$

triangulations of P such that each of them cover two of these triangles. Since each triangulation of P contains exactly one acute triangle of P or two triangles sharing an edge that contains c at its middle point, it follows that

$$
\frac{1}{4}\left[\binom{n}{3}-\frac{n(n-2)}{2}\right]+\frac{n(n-2)}{4}=\frac{1}{4}\left[\binom{n}{3}+\frac{n(n-2)}{2}\right]
$$

triangulations are necessary and sufficient to cover all the triangles of P. To show that this number of triangulations is needed, we point out that any two acute triangles of P cannot belong to the same triangulation (note that they intersect at c). Moreover, these triangulations are different from those containing right triangles. Our result follows.

A similar argument follows for n odd, except that some extra care has to be paid to the way in which we group the nonacute triangles of P around the acute triangles of P.

Thus, the number of triangulations needed to cover all the triangles of P is asymptotically $\binom{n}{3} / 4$. The next result follows trivially.

Corollary 1. Let P be a set of n points in convex position and p any point in the interior of $C H(P)$. Then p belongs to the interior of at most $\frac{\binom{n}{3}}{4}+O\left(n^{2}\right)$ triangles of P.

3.2 Covering the Empty Triangles on the Horton Set

We will now show that all the empty triangles in H_{k} can be covered with $O(n \log n)$ triangulations. The bound is tight.

Fig. 3 The depth of an edge

Consider an edge e of H_{k} that is visible from below, and a vertical line ℓ that intersects e at a point q in the interior of e. The depth of e is the number of edges of H_{k}, visible from below, intersected by ℓ below q. It is not hard to see that the maximal depth of an edge of H_{k} visible from below is at most $\log n-1$ and that this bound is tight; see Fig. 3. Moreover, it is easy to see that the union of all edges of H_{k} with the same depth is an x-monotone path. Now we can prove

Theorem 4. $\Theta(n \log n)$ triangulations of H_{k} are necessary and sufficient to cover the set of empty triangles of H_{k}.

Proof. Consider the sets H_{k-1}^{+}and H_{k-1}^{-}. We will show how to cover all the empty triangles of H_{k} with two vertices in H_{k-1}^{+}and one in H_{k-1}^{-}with $O(n \log n)$ triangulations. Label the elements of H_{k-1}^{-}from left to right as $p_{0}, \ldots, p_{\frac{n}{2}-1}$.

For each $0 \leq d \leq k-1$, proceed as follows: For every $p_{j} \in H_{k-1}^{-}$, join p_{j} to the endpoints of all the edges of H_{k-1}^{+}of depth d. This gives us a set $I D_{d, j}^{+}$of interiordisjoint empty triangles. It is not hard to see that if $(d, j) \neq\left(d^{\prime}, j^{\prime}\right)$, then $I D_{d, j}^{+} \cap$ $I D_{d^{\prime}, j^{\prime}}^{+}=\emptyset$.

It is easy to see that the union of these sets covers all the empty triangles with two vertices in H_{k-1}^{+}and one in H_{k-1}^{-}. In a similar way, cover all the triangles with two vertices in H_{k-1}^{-}, and one in H_{k-1}^{+}with a family of sets $I D_{d, j}^{-}$.

Let ℓ_{1} be the straight line connecting the leftmost point in H_{k-1}^{+}to the rightmost point in H_{k-1}^{-}, and ℓ_{2} the straight line that connects the rightmost point in H_{k-1}^{+}with the leftmost point of H_{k-1}^{-}. Let q be a point slightly above the intersection point of ℓ_{1} with ℓ_{2}.

It is clear that for each $I D_{d, j}^{+}$there is exactly one empty triangle that contains q in its interior. This implies that q is contained in $\Omega(n \log n)$ empty triangles, and thus $\Omega(n \log n)$ triangulations are necessary to cover all the empty triangles in H_{k}.

Now we show that $O(n \log n)$ of H_{k} triangulations are sufficient. Consider each set $I D_{d, j}^{+}$and $I D_{d, j}^{-}$, and complete it to a triangulation. This gives us $O(n \log n)$ triangulations that cover all the triangles with vertices in both H_{k-1}^{+}and H_{k-1}^{-}.

Take a set of triangulations $\mathcal{T}_{k-1}^{+}=\left\{T_{1}^{+}, \ldots, T_{m}^{+}\right\}$of H_{k-1}^{+}that covers all of its empty triangles. Since H_{k-1}^{+}and H_{k-1}^{-}are isomorphic, we can find a set of triangulations $\mathcal{T}_{k-1}^{-}=\left\{T_{1}^{-}, \ldots, T_{m}^{-}\right\}$of H_{k-1}^{-}that covers all the empty triangles of H_{k-1}^{-}such that T_{i}^{+}is isomorphic to T_{i}^{-}. For each i, we can find a triangulation T_{i} of H_{k} that contains T_{i}^{+}and T_{i}^{-}as induced subgraphs.

Thus, if $T(n)$ is the number of triangulations required to cover the empty triangles of H_{k}, the following recurrence holds for $n=2^{k}$:

$$
T(n)=T\left(\frac{n}{2}\right)+O(n \log n)
$$

This solves to $T(n)=O(n \log n)$, and our result follows.
We conclude this section with the following conjecture.
Conjecture 2. At least $\Omega(n \log n)$ triangulations are needed to cover all the empty triangles of any point set with n points.

4 A Point in Many Edge-Disjoint Triangles

The problem of finding a point contained in many triangles of a point set was solved by Boros and Füredi [4]; see also Bukh [6]. They proved

Theorem 5. For any set P of n points in general position, there is a point in the interior of the convex hull of P contained in $\frac{2}{9}\binom{n}{3}+O\left(n^{2}\right)$ triangles of P. The bound is tight.

We now study a variant to this problem, in which we are interested in finding a point in many edge-disjoint triangles. We consider the following.

Problem 3. Let P be a set of points in the plane in general position, and $q \notin P$ a point of the plane. What is the largest number of edge-disjoint triangles of P such that q belongs to the interior of all of them?

We start by giving some preliminary results, and then we study Problem 3 for point sets in general position and sets of vertices of regular polygons.

Given a point set P, and a point q not in P, let $\mathcal{T}(P, q)$ [or $\mathcal{T}(q)$ for short] be the set of triangles of P that contain q. We define the graph $G(P, q)$ whose vertex set is $\mathcal{T}(q)$ in which two triangles are adjacent if they share an edge; see Fig. 4. We may assume that q does not belong to any line passing through two elements of P. We now prove

Lemma 3. The degree of every vertex of $G(P, q)$ is exactly $n-3$.
Proof. Let $\Delta(x, y, z)$ be a triangle that contains q in its interior. Let p be any point in $P \backslash\{x, y, z\}$. Then exactly one of the triangles $\Delta(x, y, p), \Delta(x, p, z)$, or $\Delta(p, y, z)$

Fig. $4 G(P, q)$

Fig. 5

contains q; see Fig. 5. That is, exactly one of $\Delta(x, y, p), \Delta(x, p, z)$, or $\Delta(p, y, z)$ belongs to $\mathcal{T}(q)$. Our result follows.

Observe now that finding sets of edge-disjoint triangles that contain q is equivalent to finding independent sets in $G(P, q)$. Let $\tau(P, q)$ (or $\tau(q)$ for short) be the largest number of edge-disjoint triangles on P containing q. We now prove

Lemma 4.

$$
\frac{|\mathcal{T}(q)|}{n-2} \leq \tau(q) \leq \frac{3|\mathcal{T}(q)|}{n}
$$

Proof. It follows from Lemma 3 that the size of the largest independent set of $G(P, q)$ is at least $\frac{|\mathcal{T}(q)|}{n-2}$. To prove our upper bound, it is sufficient to observe that if a vertex of $G(P, q)$ is not in an independent set I of $G(P, q)$, then it is adjacent to at most three vertices in it, one per each of its edges. Hence, by counting the number of edges connecting a vertex in I to another in $\mathcal{T}(q) \backslash I$, we obtain

$$
(n-3)|I| \leq 3|\mathcal{T}(q) \backslash I| .
$$

Our result follows.
From Theorem 5 and Lemma 4, it is easy to see that in any set of n points in general position on the plane, there is a point q such that

$$
\frac{n^{2}}{27}+O(n) \approx \frac{\frac{2}{9}\binom{n}{3}+O\left(n^{2}\right)}{n-2} \leq \tau(q) \leq \frac{3 \cdot \frac{2}{9}\binom{n}{3}+O\left(n^{2}\right)}{n} \approx \frac{n^{2}}{9}+O(n) .
$$

Fig. 6 Partitions of P

Thus, we have
Corollary 2. For any point set in general position on the plane, there is a point q such that $\tau(q) \leq \frac{n^{2}}{9}+O(n)$.

We now prove an even stronger result. We now prove
Proposition 1. Let P a set of n points in general position on the plane. Then for any point $q \notin P$ of the plane, $\tau(q) \leq n^{2} / 9$.

Proof. Let $q \notin P$ be any point of the plane. If q is on a straight line passing through two elements of P, then by slightly moving it, q could be moved to a position in which it is contained in more edge-disjoint triangles. Thus, assume that q is not on any straight line through two elements of P.

First, we show the following lemma:
Lemma 5. There exist three straight lines passing through q such that they partition P into six subsets $P_{0}, P_{1}, \ldots, P_{5}$ in counterclockwise order around q, with $\left|P_{0}\right|=$ $\left|P_{2}\right|=\left|P_{4}\right|$ (we allow the possibility that $P_{i}=\emptyset$ for some i).

Proof. Let l_{0} be a straight line passing through q such that one of the half-planes bounded by l_{0}, say the one on top of it, contains an even number of elements of P. Take other straight lines l_{1} and l_{2} passing through q, and define the subsets P_{i} of P, $0 \leq i \leq 5$, as shown in Fig. 6a, where $\left|P_{0} \cup P_{1} \cup P_{2}\right|$ is even. Let l^{*} be a straight line passing through q, equipartitioning the elements of $P_{0} \cup P_{1} \cup P_{2}$.

Choose l_{1} and l_{2} such that initially $\left|P_{0}\right|=\left|P_{2}\right|=\left|P_{3}\right|=\left|P_{5}\right|=0$. From their initial positions, rotate l_{1} counterclockwise and l_{2} clockwise around q in such a way that P_{0} and P_{2} always contain the same number of elements, and until they both reach the position of l^{*} at the same time, and the boundary of P_{4} always contains no more than one element of P.

Initially, $\left|P_{4}\right| \geq 0=\left|P_{0}\right|$. On the other hand, we have $\left|P_{4}\right|=0 \leq\left|P_{0}\right|$ when l_{1} and l_{2} reach the position of l^{*}. Hence, at some point while rotating l_{1} and l_{2}, we have that $\left|P_{0}\right|=\left|P_{2}\right|=\left|P_{4}\right|$; see Fig. 6b.

Fig. 7 Triangles in the $\mathcal{T}_{i j k}$'s
Let $P_{0}, P_{1}, \ldots, P_{5}$ be as in Lemma 5. Write $\left|P_{i}\right|=n_{i}$ for $0 \leq i \leq 5$ (we have $n_{0}=$ $n_{2}=n_{4}$). We henceforth read indices modulo 6 . Let \mathcal{T} be a set of edge-disjoint triangles with vertices in P, containing q in its interior. For integers i, j, k, let $\mathcal{T}_{i j k}$ denote the set of elements of \mathcal{T} such that it has one vertex in P_{i}, another in P_{j} and the other in P_{k}, and let $t_{i j k}=\left|\mathcal{T}_{i j k}\right|$; see Fig. 7.

Then

$$
\begin{aligned}
\mathcal{T} & =\left[\cup_{i=0}^{5} \mathcal{T}_{i i(i+3)}\right] \cup\left[\cup_{i=0}^{5} \mathcal{T}_{i(i+1)(i+3)}\right] \cup\left[\cup_{i=0}^{5} \mathcal{T}_{i(i+1)(i+4)}\right] \cup\left[\cup_{i=0}^{5} \mathcal{T}_{i(i+2)(i+4)}\right] \\
& =\left[\cup_{i=0}^{5} \mathcal{T}_{i i(i+3)}\right] \cup\left[\cup_{i=0}^{5} \mathcal{T}_{i(i+2)(i+5)}\right] \cup\left[\cup_{i=0}^{5} \mathcal{T}_{i(i+2)(i+3)}\right] \cup\left[\cup_{i=0}^{5} \mathcal{T}_{i(i+2)(i+4)}\right] .
\end{aligned}
$$

For integers i, j, let $E_{i j}$ denote the set of all segments connecting an element of P_{i} and another of P_{j}. Then for each integer $i,\left|E_{i(i+2)}\right|=n_{i} n_{i+2}$ and $\mathcal{T}_{i(i+2)(i+3)} \cup$ $\mathcal{T}_{i(i+2)(i+4)} \cup \mathcal{T}_{i(i+2)(i+5)}$ is the set of elements of \mathcal{T} that has a side belonging to $E_{i(i+2)}$. Hence, we have

$$
\begin{equation*}
f(i) \equiv t_{i(i+2)(i+3)}+t_{i(i+2)(i+4)}+t_{i(i+2)(i+5)} \leq n_{i} n_{i+2} \tag{1}
\end{equation*}
$$

for each i. Similarly, by considering the cardinality of $E_{i(i+3)}$, we obtain

$$
\begin{align*}
g(i) \equiv & 2 t_{i l(i+3)}+t_{i(i+1)(i+3)}+t_{i(i+2)(i+3)} \\
& +2 t_{i(i+3)(i+3)}+t_{i(i+3)(i+4)}+t_{i(i+3)(i+5)} \leq n_{i} n_{i+3} \tag{2}
\end{align*}
$$

for each i. By (1) and (2), we have

$$
\begin{equation*}
\sum_{i=0}^{5} f(i)+2 \sum_{i=0}^{2} g(i) \leq \sum_{i=0}^{5} n_{i} n_{i+2}+2 \sum_{i=0}^{2} n_{i} n_{i+3} . \tag{3}
\end{equation*}
$$

Since $g(i)=\left(t_{i(i+2)(i+3)}+t_{j(j+2)(j+3)}\right)+\left(t_{j^{\prime}\left(j^{\prime}+2\right)\left(j^{\prime}+5\right)}+t_{j^{\prime \prime}\left(j^{\prime \prime}+2\right)\left(j^{\prime \prime}+5\right)}\right)+$ $2\left(t_{i i(i+3)}+t_{j j(j+3)}\right)$, where $j=i+3, j^{\prime}=i+1, j^{\prime \prime}=j^{\prime}+3$,

$$
\begin{align*}
\sum_{i=0}^{5} f(i)+2 \sum_{i=0}^{2} g(i)= & \sum_{i=0}^{5}\left(t_{i(i+2)(i+3)}+t_{i(i+2)(i+4)}+t_{i(i+2)(i+5)}\right) \\
& +2 \sum_{i=0}^{5}\left(t_{i(i+2)(i+3)}+t_{i(i+2)(i+5)}\right)+4 \sum_{i=0}^{5} t_{i i(i+3)} \\
= & 3|\mathcal{T}|+\sum_{i=0}^{5} t_{i i(i+3)} \geq 3|\mathcal{T}| \tag{4}
\end{align*}
$$

Fig. 8 A vertex set of a regular 27-gon

On the other hand, if we denote the right-hand side of (3) by S,

$$
\begin{align*}
S= & \left(n_{0} n_{2}+n_{2} n_{4}+n_{4} n_{0}\right)+\left(n_{1} n_{3}+n_{3} n_{5}+n_{5} n_{1}\right) \\
& +2\left(n_{0} n_{3}+n_{2} n_{5}+n_{4} n_{1}\right) \\
= & \frac{l^{2}}{3}+\frac{2 l m}{3}+\left(n_{1} n_{3}+n_{3} n_{5}+n_{5} n_{1}\right), \tag{5}
\end{align*}
$$

where $l=n_{0}+n_{2}+n_{4}$ (recall that $n_{0}=n_{2}=n_{4}$) and $m=n_{1}+n_{3}+n_{5}$. Since $n_{1} n_{3}+$ $n_{3} n_{5}+n_{5} n_{1}=\left[m^{2}-\left(n_{1}^{2}+n_{3}^{2}+n_{5}^{2}\right)\right] / 2$ and since $n_{1}^{2}+n_{3}^{2}+n_{5}^{2} \geq m^{2} / 3$ with equality if and only if $n_{1}=n_{3}=n_{5}$, we have $n_{1} n_{3}+n_{3} n_{5}+n_{5} n_{1} \leq m^{2} / 3$. From this and (5), it follows that

$$
\begin{equation*}
S \leq \frac{l^{2}}{3}+\frac{2 l m}{3}+\frac{m^{2}}{3}=\frac{(l+m)^{2}}{3}=\frac{n^{2}}{3} . \tag{6}
\end{equation*}
$$

Now combining (3), (4) and (6), we obtain $|\mathcal{T}| \leq n^{2} / 9$, as desired.
To achieve the equality, it is necessary that $n_{0}=n_{2}=n_{4}$ and $n_{1}=n_{3}=n_{5}$ for some partition (Fig. 8).

We now prove
Proposition 2. Let n be a positive integer and P a set of n points in general position on the plane. Then there exists a point q on the plane such that $\tau(q) \geq \frac{n^{2}}{12}$.
Proof. We use the following lemma, which was proved by Ceder [7] (see also [5]) and applied by Bukh [6] to obtain a lower bound of $\max _{q}|\mathcal{T}(q)|$ for given P :

Lemma 6. There exist three straight lines such that they intersect at a point q and partition the plane into six open regions each of which contains at least $n / 6-1$ elements of P.

Fig. 9 Matching M_{i} (bold lines) and triangles using edges of M_{i}

Let q be as in Lemma 6. We may assume that q is not on any straight line passing through two elements of P. Let $m=\lceil n / 6\rceil-1$ and denote by $D_{0}, D_{1}, \ldots, D_{5}$ the six regions in counterclockwise order around q. For each $0 \leq i \leq 5$, let P_{i} be a subset of $P \cap D_{i}$ with $\left|P_{i}\right|=m$; see Fig. 9 .

Now consider the geometric complete bipartite graph with vertex set $P_{0} \cup P_{3}$ and edge set $E=\left\{p p^{\prime} \mid p \in P_{0}, p^{\prime} \in P_{3}\right\}$. As a consequence of a well-known result in graph theory, E can be decomposed into m subsets $M_{i}, 0 \leq i \leq m-1$, such that each M_{i} is a perfect matching, i.e., consisting of m independent edges. Let $P_{1}=$ $\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ and $P_{4}=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$. For each i and each element $e=p p^{\prime} \in M_{i}$, where $p \in P_{0}$ and $p^{\prime} \in P_{3}$, let u_{i} denote either s_{i} or t_{i} according to whether $p p^{\prime} \cap D_{1}=$ \emptyset or $p p^{\prime} \cap D_{4}=\emptyset$. Then $\triangle\left(p, p^{\prime}, u_{i}\right)$ contains q in its interior. Observe that all of the m triangles in $\mathcal{T}_{i}=\left\{\triangle\left(p, p^{\prime}, u_{i}\right) \mid e=p p^{\prime} \in M_{i}\right\}$ are edge-disjoint, and all of the m^{2} triangles in $\mathcal{T}_{03}=\cup_{i=0}^{m} \mathcal{T}_{i}$ are edge-disjoint as well.

Define the sets \mathcal{T}_{14} and \mathcal{T}_{25} of triangles similarly (the elements of \mathcal{T}_{14} are triangles with one vertex in P_{1}, another in P_{4}, and the other in $P_{2} \cup P_{5}$, while the elements of \mathcal{T}_{25} are triangles with one vertex in P_{2}, another in P_{5}, and the other in $P_{3} \cup P_{0}$). It can be observed that all of the $3 m^{2}=n^{2} / 12-O(n)$ triangles in $\mathcal{T}_{03} \cup \mathcal{T}_{14} \cup \mathcal{T}_{25}$ are edge-disjoint.

Thus by using Corollary 2, Proposition 1, and Proposition 2, we have
Theorem 6. In any point set in general position, there is a point q such that $\frac{n^{2}}{12} \leq$ $\tau(q) \leq \frac{n^{2}}{9}$. Moreover, for any $q, \tau(q) \leq \frac{n^{2}}{9}$.

4.1 Regular Polygons

By Theorem 6, any point in the interior of the convex hull of a point set is contained in at most $n^{2} / 9$ edge-disjoint triangles of P. It is also easy to construct point sets for which that bound is tight; see Fig. 8a). In fact, the point sets in that figure can be chosen in convex position.

Fig. 10 (a) The triple (1,2,3), and p_{0} determine $\Delta\left(p_{0}, p_{2}, p_{5}\right)$. (b) $S(1,2,3)$ is obtained by rotating $\Delta\left(p_{0}, p_{2}, p_{5}\right)$, obtaining a set of 9 edge-disjoint triangles

We now show that the bound in Theorem 6 is also achieved when P is the set of vertices of a regular polygon. We found proving this result to be a challenging problem. In what follows, we will assume that $n=9 m, m \geq 1$.

Let $\left(a_{i}, b_{i}, c_{i}\right)$ be an ordered set of integers. We call $\left(a_{i}, b_{i}, c_{i}\right)$ a triangular triple if it satisfies the following conditions:
(a) a_{i}, b_{i}, and c_{i} are all different,
(b) $a_{i}+b_{i}+c_{i}=n-3$, and
(c) $1 \leq a_{i}, b_{i}, c_{i} \leq \frac{n-3}{2}$.

Observe that for any vertex p_{r} of P, a triangular triple $\left(a_{i}, b_{i}, c_{i}\right)$, defines a triangle $\Delta\left(p_{r}, p_{r+a_{i}+1}, p_{r+a_{i}+b_{i}+2}\right)$ of P. Moreover, condition c) above ensures that $\Delta\left(p_{r}, p_{r+a_{i}+1}, p_{r+a_{i}+b_{i}+2}\right)$ is acute, and hence it contains the center c of P. Note that since $a_{i}+b_{i}+c_{i}=n-3, p_{r}=p_{r+a_{i}+b_{i}+c_{i}+3}$, addition taken mod n. Thus, the edges of $\Delta\left(p_{r}, p_{r+a_{i}+1}, p_{r+a_{i}+b_{i}+2}\right)$ skip a_{i}, b_{i}, and c_{i} vertices of P, respectively; see Fig. 10a.

Let $S\left(a_{i}, b_{i}, c_{i}\right)=\left\{\Delta\left(p_{r}, p_{r+a_{i}+1}, p_{r+a_{i}+b_{i}+2}\right): p_{r} \in P\right\}$. The set $S\left(a_{i}, b_{i}, c_{i}\right)$ can be seen as the set of triangles obtained by rotating $\Delta\left(p_{0}, p_{0+a_{i}+1}, p_{0+a_{i}+b_{i}+2}\right)$ around the center of P; see Fig. 10b. The next observation will be useful.

Observation 2. Let $\left(a_{i}, b_{i}, c_{i}\right)$ and $\left(a_{j}, b_{j}, c_{j}\right)$ be triangular triples of P such that $\left\{a_{i}, b_{i}, c_{i}\right\} \cap\left\{a_{j}, b_{j}, c_{j}\right\}=\emptyset, i \neq j$. Then all of the triangles in $S\left(a_{i}, b_{i}, c_{i}\right) \cup$ $S\left(a_{j}, b_{j}, c_{j}\right)$ are edge-disjoint.

Consider a set $C=\left\{\left(a_{0}, b_{0}, c_{0}\right), \ldots,\left(a_{k-1}, b_{k-1}, c_{k-1}\right)\right\}$ of ordered triangular triples. We say that C is a generating set of triangular triples if the following condition holds:

$$
\left\{a_{i}, b_{i}, c_{i}\right\} \cap\left\{a_{j}, b_{j}, c_{j}\right\}=\emptyset, i \neq j
$$

$(4,8,12)$	$(7,15,20)$	$(10,22,28)$	$(13,29,36)$	$(16,36,44)$
$(5,9,10)$	$(8,13,21)$	$(11,20,29)$	$(14,27,37)$	$(17,34,45)$
$(6,7,11)$	$(9,16,17)$	$(12,18,30)$	$(15,25,38)$	$(18,32,46)$
	$(10,14,18)$	$(13,23,24)$	$(16,23,39)$	$(19,30,47)$
	$(11,12,19)$	$(14,21,25)$	$(17,30,31)$	$(20,28,48)$
		$(15,19,26)$	$(18,28,32)$	$(21,37,38)$
		$(16,17,27)$	$(19,26,33)$	$(22,35,39)$
			$(20,24,34)$	$(23,33,40)$
			$(21,22,35)$	$(24,31,41)$
				$(25,29,42)$
				$(26,27,43)$

Fig. 11 Triangular triples for $n=27,45,63,81$ and 99

Note that $\left|S\left(a_{i}, b_{i}, c_{i}\right)\right|=n$, and thus

$$
\bigcup_{\left(a_{i}, b_{i}, c_{i}\right) \in C} S\left(a_{i}, b_{i}, c_{i}\right)
$$

contains $n k$ edge-disjoint triangles containing the center P. Our task is now that of finding a generating set of as many triangular triples as possible.

Theorem 7. Let P be the set of vertices of a regular polygon with $n=9 m$ vertices, and let c be its center. Then if m is odd, then $|\tau(c)| \geq \frac{n^{2}}{9}$, and if m is even, then $|\tau(c)| \geq \frac{n^{2}}{9}-n$.
Proof. The proof when m is odd proceeds by constructing a generating set C with $\frac{n}{9}$ triangular triples. Let $k=\frac{9 m-3}{6}$ and $k^{\prime}=k+2 m-1$. Given $i \in\{0,1, \ldots, m-1\}$, we define the i th ordered triple $\left(a_{i}, b_{i}, c_{i}\right)$ as follows (see Fig. 11):

$$
\begin{aligned}
a_{i} & =k+i, \\
b_{i} & = \begin{cases}k^{\prime}-2 i-1 \quad \text { if } & i<\frac{m-1}{2}, \\
k^{\prime}-2 i+m-1 \text { if } & i \geq \frac{m-1}{2},\end{cases} \\
c_{i} & = \begin{cases}k^{\prime}+i+1+\frac{m+1}{2} \text { if } & i<\frac{m-1}{2}, \\
k^{\prime}+i+1-\frac{m-1}{2} \text { if } & i \geq \frac{m-1}{2} .\end{cases}
\end{aligned}
$$

We now prove that the triples $\left(a_{i}, b_{i}, c_{i}\right)$ are triangular; that is, $a_{i}+b_{i}+c_{i}=n-3$. Since $b_{i}+c_{i}=2 k^{\prime}-i+\frac{m+1}{2}$ for all i,

$$
a_{i}+b_{i}+c_{i}=k+2 k^{\prime}+\frac{m+1}{2}=9 m-3 .
$$

Fig. 12 (a) Triangular triples $\left(a_{i}, b_{i}, c_{i}\right)$ for $n=9 \cdot 3=27$ and (b) triples $\left(a_{i}^{\prime}, b_{i}^{\prime}, c_{i}^{\prime}\right)=$ $\left(a_{i}-3, b_{i}-3, c_{i}-3\right)$ for $n=9 \cdot 2=18$

It is easy to see that

$$
\begin{aligned}
k & \leq a_{i} \leq k+m-1, \\
k+m=k^{\prime}-m+1 & \leq b_{i} \leq k^{\prime} \\
k^{\prime}+1 & \leq c_{i}
\end{aligned}
$$

Therefore, $a_{i}<b_{j}<c_{k}$ for every i, j, k. Also, by construction it can be verified that $a_{i} \neq a_{j}, b_{i} \neq b_{j}$, and $c_{i} \neq c_{j}$ for every $i \neq j$.

Thus, the set $\bigcup\left\{a_{i}, b_{i}, c_{i}\right\}$ contains no repeated elements.

$$
\left(a_{i}, b_{i}, c_{i}\right) \in C
$$

Finally, note that the maximum value that can be reached by c_{i} occurs when $i=\frac{m-3}{2}$, and thus,

$$
c_{i} \leq k^{\prime}+1+\frac{m-3}{2}+\frac{m+1}{2}=k^{\prime}+m=\frac{9 m-3}{2} .
$$

Therefore, C is a generating set of triangular triples. Thus, c is contained in at least $\frac{n^{2}}{9}$ edge-disjoint triangles.

The proof when m is even proceeds by also constructing a set of m triples. We use the set of triples just constructed for $m+1$ and modify it as follows: Suppose that the set of $m+1$ triples is $\left\{\left(a_{0}, b_{0}, c_{0}\right), \ldots,\left(a_{m}, b_{m}, c_{m}\right)\right\}$.

Let $a_{i}^{\prime}=a_{i}-3, b_{i}^{\prime}=b_{i}-3$, and $c_{i}^{\prime}=c_{i}-3$, and consider $C^{\prime}=\left\{\left(a_{i}^{\prime}, b_{i}^{\prime}, c_{i}^{\prime}\right) \mid 0 \leq\right.$ $i \leq m\}$. C^{\prime} induces a set of triangles in P. Nevertheless, $2 n$ triangles do not contain the point c in their interior; see Fig. 12. Therefore, this construction guarantees that c is contained in at least $(m+1) n-2 n=\frac{n^{2}}{9}-n$ edge-disjoint triangles.

5 A Point in Many Edge-Disjoint Empty Triangles

We conclude our chapter by briefly studying the problem of the existence of a point contained in many edge-disjoint empty triangles of a point set. We point out that if we are interested only in empty triangles containing a point, it is easy to see that
for any point set P, there is always a point q contained in a linear number of (not necessarily edge-disjoint) empty triangles. This follows directly from the following facts:

1. Any point set P with n elements always determines at least a quadratic number of empty triangles $[2,16]$.
2. We can always choose $2 n-c-2$ points in the plane such that any empty triangle of P contains one of them, where c is the number of vertices of the convex hull of P; see $[8,16]$.

We now prove
Theorem 8. There are point sets P such that every $q \notin P$ is contained in at most a linear number of empty edge-disjoint triangles of P.

Proof. Let H_{k}, H_{k-1}^{+}, and H_{k-1}^{-}be as defined in Sect. 2. Consider any set T_{k}^{+} (respectively, T_{k}^{-}) of empty edge-disjoint triangles such that each of them has two vertices in H_{k-1}^{+}(respectively, H_{k-1}^{-}) and the other in H_{k-1}^{-}(respectively, H_{k-1}^{+}). Let $t \in T_{k}^{+}$. Then the edge of t with both endpoints in H_{k-1}^{+}is an edge of H_{k-1}^{+}visible from below. Since the triangles in T_{k}^{+}are edge-disjoint, the number of elements of T_{k}^{+}is at most the number of edges of H_{k-1}^{+}visible from below, which is a linear function in n. Thus, $\left|T_{k}^{+}\right| \in O(n)$. Similarly, we can prove that $\left|T_{k}^{-}\right| \in O(n)$.

Consider a point $q \in \mathrm{CH}\left(H_{k}\right) \backslash \mathrm{CH}\left(H_{k-1}^{+}\right) \cup \mathrm{CH}\left(H_{k-1}^{-}\right)$. Clearly, any empty triangle containing q belongs to some $T_{k}^{+} \cup T_{k}^{-}$, and thus it belongs to at most a linear number of edge-disjoint triangles of H_{k}.

Suppose next that $q \in \mathrm{CH}\left(H_{k-1}^{+}\right) \cup \mathrm{CH}\left(H_{k-1}^{-}\right)$. Suppose without loss of generality that $q \in \mathrm{CH}\left(H_{k-1}^{+}\right)$and that q belongs to a set S of edge-disjoint triangles of H_{k}. S may contain some triangles with vertices in both of H_{k-1}^{+}and H_{k-1}^{-}. There are at most a linear number of such triangles. The remaining elements in S have all of their vertices in H_{k-1}^{+}. Thus, the number of edge-disjoint triangles containing q satisfies

$$
T(n) \leq T\left(\frac{n}{2}\right)+\Theta(n)
$$

and thus q belongs to at most a linear number of edge-disjoint triangles.
The first part of our result follows. To show that our bound is tight, let q be as in the proof of Theorem 4. It is easy to see that q belongs to a linear number of triangles with vertices in both H_{k}^{+}and H_{k}^{-}, and our result follows.

We conclude with the following.
Conjecture 3. Let P be a set of n points in general position on the plane. Then there is always a point $q \notin P$ on the plane such that it is contained in at least $\log n$ edge-disjoint triangles of P.

Acknowledgements Our work was partially supported by projects MTM2009-07242, MTM200603909 (Spain), and SEP-CONACYT of México, Proyecto 80268.

References

1. O. Aichholzer, R. Fabila-Monroy, D. Flores-Pe-aloza, T. Hackl, C. Huemer, J. Urrutia, Empty monochromatic triangles. Comput. Geom. Theor. Appl. 42, 934-938 (2009)
2. I. Bárány, P. Valtr, Planar point sets with a small number of empty convex polygons. Stud. Sci. Math. Hung. 41(2), 243-266 (2004)
3. C. Bautista-Santiago, M. Heredia, C. Huemer, A. Ramírez-Vigueras, C. Seara, J. Urrutia, On the number of edges in geometric graphs without empty triangles (January 2011) to appear in Graphs and Combinatorics. DOI : 10.1007/s00373-012-1220-9
4. E. Boros, Z. Füredi, The number of triangles covering the center of an n-set. Geom. Dedicata 17, 69-77 (1984)
5. R. Buck, E. Buck, Equipartitions of convex sets. Math. Mag. 22, 195-198 (1949)
6. B. Bukh, A point in many triangles. Electron. J. Comb. 13(10) (2006)
7. J. Ceder, Generalized sixpartite problems. Bol. Soc. Math. Mexicana 2, 28-32 (1964)
8. J. Czyzowicz, E. Kranakis, J. Urrutia, Guarding the convex subsets of a point set, in Proceedings of the 12th Canadian Conference on Computational Geometry, 2000, New Brunswick, Canada, pp. 47-50
9. K. Dehnhardt, Leere konvexe Vielecke in ebenen Punktmengen. Dissertation, TU Braunschweig, 1987
10. O. Devillers, F. Hurtado, G. Károlyi, C. Seara, Chromatic variants of the Erdôs-Szekeres theorem. Comput. Geom. Theor. Appl. 26(3), 193-208 (2003)
11. P. Erdős, Some more problems on elementary geometry. Aust. Math. Soc. Gaz. 5, 52-54 (1978)
12. P. Erdős, G. Szekeres, A combinatorial problem in geometry. Compos. Math. 2, 463-470 (1935)
13. T. Gerken, Empty convex hexagons in planar point sets. Discr. Comput. Geom. 39(1-3), 239-272 (2008)
14. H. Harborth, Konvexe Fünfecke in ebenen Punktmengen. Elem. Math. 33, 116-118 (1978)
15. J.D. Horton, Sets with no empty convex 7-gons. Can. Math. Bull. 26, 482-484 (1983)
16. M. Katchalski, A. Meir, On empty triangles determined by points in the plane. Acta Math. Hung. 51, 323-328 (1988)
17. T. Kirkman, On a problem in combinatorics. Camb. Dublin Math. J. 2, 191-204 (1847)
18. W. Morris, V. Soltan, The Erdős-Szekeres problem on points in convex position-a survey. Bull. (New Ser.) Am. Math. Soc. 37(4), 437-458 (2000)
19. C.M. Nicolás, The empty hexagon theorem. Discr. Comput. Geom. 38, 389-397 (2007)
20. J. Pach, G. Tóth, Monochromatic empty triangles in two-colored point sets, in Geometry, Games, Graphs and Education: the Joe Malkevitch Festschrift (COMAP, Bedford, 2008), pp. 195-198
21. G. Purdy, The minimum number of empty triangles. AMS Abstr. 3, 318 (1982)
22. D. Ray-Chaudhuri, R. Wilson, Solution to Kirkman's schoolgirl problem. Proc. Symp. Pure Math. (Am. Math. Soc.) 19, 187-204 (1971)
23. H.J. Ryser, Combinatorial Mathematics (Math. Assoc. Amer., Buffalo, 1963), pp. 99-102

[^0]: J. Cano •L.F. Barba (\triangle)

 Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México, México, D.F., México
 e-mail: j_cano@uxmcc2.iimas.unam.mx; 1.barba@uxmcc2.iimas.unam.mx
 J. Urrutia

 Instituto de Matemáticas, Universidad Nacional Autónoma de México, México, D.F., México. Partially supported by CONACYT of México grant number: CB-2012-01-0178379
 e-mail: urrutia@matem.unam.mx
 T. Sakai

 Research Institute of Educational Development, Tokai University, Kanagawa, Japan
 e-mail: sakai@tokai-u.jp

