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Abstract. Let P, Q be two polygons of n and m vertices respectively. A circle containing P and whose
interior does not intersect Q is called a separating circle. We propose an algorithm for finding the
minimum separating circle between a fixed convex polygon P and query convex polygon Q. P and Q are
given as ordered lists of vertices (sorted according to their order of appearance along the convex hulls
of P and Q respectively). We perform a linear time preprocessing on the number of vertices of P ; the
query time complexity is O(log n log m).

Introduction

Kim and Anderson [1] presented a quadratic algorithm for solving the circular separabil-
ity problem between any two finite planar sets. Bhattacharya [2] improved the running
time to O(n log n). Finally O’Rourke, Kosaraju and Megiddo [3] found an optimal lin-
ear time algorithm to solve this problem. In this paper we study a new version of the
problem. Let P be a fixed convex polygon with n vertices. We propose an algorithm
for solving the circular separability problem between P and any query convex polygon
Q with m vertices, both given as an ordered list of their elements. Our algorithm uses a
linear time preprocessing on P , and has O(log n logm) query time complexity.

1 Circular separability

Suppose for ease of description that the vertices of P and Q are in general position, and
that P has no four co-circular vertices. Let CP be the minimum enclosing circle of P
and let cP be its center. It is known that cP can be found in O(n) time [4]. Note that cP
is a point on an edge of the farthest-point Voronoi diagram of the vertices of P . Clearly
if the interiors of Q and P are not disjoint, our problem has no solution, hence we will
suppose that d(P,Q) ≥ 0. It is also clear that if Q and CP have disjoint interiors, then
CP is trivially the minimum separating circle.

1.1 Preprocessing

We first calculate the farthest-point Voronoi diagram of the vertices of P in linear time [5].
It can be seen as a tree rooted in cP and created by adding leaves on every unbounded
edge; we will denote this tree as V(P ). For each vertex p of P , let R(p) be the farthest-
point Voronoi region associated to p, and assume that p has a pointer to R(p). Let x be
a point on an edge of V(P ), and let Tx denote the path contained in V(P ) joining cP to
x.

CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011
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2 Circle separability in convex polygons

We will use the data structure on V(P ) proposed by Roy, Karmakar, Das and Nandy
in [6], which can be constructed in linear time and uses linear space. Given a vertex v
in the tree V(P ), this data structure allows us to do a binary search on the vertices of
V(P ) lying on Tv.

1.2 The minimum separating circle

We will call every circle containing P and whose interior does not intersect Q a separating
circle. Let c′ be the center of the minimum separating circle. In this section we will find
c′ starting from the center of an arbitrary separating circle.

Given x ∈ R2, let C(x) be the minimum enclosing circle of P with center on x, and
let ρ(x) be the radius of C(x). The following is a well known result for the farthest-point
Voronoi diagram.

Proposition 1.1 Let x be a point on V(P ). Then ρ is a monotonically increasing
function along the path Tx starting at cP .

We now address some properties of separating circles, some of which are given without
proof.

Observation 1.2 The minimum separating circle has its center on V(P ).

Observation 1.3 Let x, y ∈ R2. For every z ∈ [x, y] it holds that C(z) ⊆ C(x) ∪ C(y).

The previous observation implies that the minimum separating circle is unique.

Proposition 1.4 Let x, y be two points on V(P ) such that C(x), C(y) are separating
circles and x, y belong to the boundary of the Voronoi region R(p). If z is the lowest
common ancestor of x and y in V(P ), then C(z) is a separating circle; moreover ρ(z) ≤
min{ρ(x), ρ(y)}.

Proof. Suppose that y /∈ Tx and x /∈ Ty, otherwise the result follows trivially. Assume
then that the paths connecting x and y to z have disjoint relative interiors. Let `z,p be the
straight line through z and p; this line leaves x and y in different semiplanes. Let z′ be the
intersection between `z,p and [x, y]; by Observation 1.3 we know that C(z′) ⊆ C(x)∪C(y).
Since z′, z, p are co-linear, then C(z) ⊆ C(z′), and thus ρ(z) < ρ(z′); see Figure 1(a).
Finally, by transitivity we have that C(z) ⊂ C(x) ∪ C(y), which implies that C(z) is a
separating circle. Using Proposition 1.1 we conclude that ρ(z) ≤ min{ρ(x), ρ(y)}. �

Now we generalize the previous result.

Lemma 1.5 Let x, y be two points on V(P ) such that C(x), C(y) are separating circles.
If z is the lowest common ancestor of x and y in the rooted tree V(P ), then C(z) is a
separating circle; moreover ρ(z) ≤ min{ρ(x), ρ(y)}.

Proof. Proceeding by contradiction, suppose that C(z) is not a separating circle. Let wx

be a point on Tx such that ρ(wx) = min{ρ(w) : w ∈ Tx and C(w) is a separating circle};
thus wx 6= z. Consider the intersections of the segment [wx, y] with V(P ) and suppose
that the intersection points are wx = x0, x1, . . . , xk = y in that order. Let z′ be the
lowest common ancestor of wx and x1 in V(P ). It is clear that wx and x1 belong to the
same Voronoi region. Thus by Proposition 1.4, C(z′) is a separating circle. Note that z′

belongs to Tx which is a contradiction with the definition of wx; our result follows. �
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Figure 1. (a) Proof of Proposition 1.4. (b) The construction of s0.

Theorem 1.6 Let s be a point on an edge of V(P ) such that C(s) is a separating circle.
Then c′ belongs to Ts.

Proof. Let w be a point on an edge of Ts such that

ρ(w) = min{ρ(z) | z ∈ Ts and C(z) is a separating circle}.
Suppose that w 6= c′; thus c′ /∈ Ts. Therefore by Lemma 1.5, if z is the lowest common
ancestor of c′ and w, then C(z) is a separating circle with ρ(z) ≤ ρ(c′). Also, since
c′ /∈ Tw ⊆ Ts, the inequality is strict, which is a contradiction; our result follows. �

2 The algorithm

In this section, we present an algorithm to find c′. Our algorithm first finds a separating
circle with center s0 on an edge of V(P ). Then we search for c′ using a binary search on
Ts0 .

We first construct a straight line L separating P and Q in logarithmic time [7]. Let us
assume that pL is the unique point in P closest to L. Otherwise, rotate L slightly, keeping
P and Q separated by L. Let L⊥ be the perpendicular to L that contains pL and let s0 be
the intersection of L⊥ with the boundary of R(pL). Note that d(s0, pL) defines the radius
of C(s0), therefore C(s0) is a separating circle; see Figure 1(b). Also, by construction s0

is on an edge of V(P ). It is clear that we can find s0 in O(log n+ logm) time. Suppose
that s0 is on the edge xy of V(P ), and let Tx = (cP = u0, u1, . . . , ur−1 = y, ur = x). It
follows from Theorem 1.6 that c′ is on an edge of Tx.

Using the data structure proposed by Roy, Karmakar, Das and Nandy [6], we perform
a binary search for c′ on the vertices of Tx as follows. Initially, let j = 0, and k = r.
Let ui be the mid-vertex on the path of Tx between uj and uk. First compute d(ui, Q)
in O(logm) time [7]. Now in constant time, calculate ρ(ui). If d(ui, Q) = ρ(ui), then
ui = c′ and the algorithm ends. If d(ui, Q) < ρ(ui), then we search for c′ between ui and
uk; if d(ui, Q) > ρ(ui), then we search for c′ between uj and ui.

Two possibilities arise. If c′ is a vertex on V(P ), then we will find it in O(log n)
steps. Otherwise, if c′ is an interior point of an edge S = [u, v] of V(P ), our algorithm
will return S such that c′ ∈ S. Since each step of the binary search requires O(logm)
time, the complexity of the previous search is O(log n logm).

Suppose that S is contained in the bisector of two vertices p0, p1 of P , and let QS be
the set of points on the boundary of Q visible from every point in S. It can be computed
in O(logm) time. Let qc′ be the point of intersection of C(c′) and Q. Clearly qc′ belongs



4 Circle separability in convex polygons

to QS ; see Figure 2(a). Given three points p, q, r ∈ R2, let C(pqr) be the circumcircle
of the triangle 4(pqr). For x ∈ QS , let F (x) be the radius of the circle C(p0xp1). It is
easy to see that F (x) is unimodal on QS and attains its maximal at qc′ ; see Figure 2(b).
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Figure 2. (a) The construction of QS . (b) qc′ is maximal under F .

Let Q∗S = {q0, q1, . . . , qr} be the set of vertices of Q lying on QS . We can perform a
binary search for qc′ on the sorted list Q∗S as follows. At each step we take the midpoint
q∗ of the current search list (initially Q∗S), and compute the value of F (q∗) in constant
time. Take two points on each side of q∗ at epsilon distance on the boundary of Q. If
q∗ is a local maximum of F , then the algorithm returns qc′ = q∗. Otherwise, determine
if qc′ lies to the left or to the right of q∗. Eliminate half of the list according to the
position of qc′ and repeat recursively. Our algorithm returns either the value of qc′ if it
is a vertex of Q, or a segment H = (qi, qi+1) of QS such that qc′ belongs to H. In the
first case we are done, since c′ can be determined in constant time given the position of
qc′ . In the second case, the problem is reduced to that of finding a point c′ ∈ S such that
d(c′, p0) = d(c′, H). This case can be solved with a quadratic equation in constant time.

Since each step of the binary search requires constant time, the algorithm finds
the point qc′ in O(logm) time, giving an overall complexity of O(log n logm) for the
algorithm.
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