Dynamic circle separability between convex polygons

Luis Barba ${ }^{1}$, Jorge Urrutia ${ }^{2}$
${ }^{1}$ Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México
l.barba@uxmcc2.iimas.unam.mx
${ }^{2}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México
urrutia@matem.unam.mx

Abstract

Let P, Q be two polygons of n and m vertices respectively. A circle containing P and whose interior does not intersect Q is called a separating circle. We propose an algorithm for finding the minimum separating circle between a fixed convex polygon P and query convex polygon $Q . P$ and Q are given as ordered lists of vertices (sorted according to their order of appearance along the convex hulls of P and Q respectively). We perform a linear time preprocessing on the number of vertices of P; the query time complexity is $O(\log n \log m)$.

Introduction

Kim and Anderson [1] presented a quadratic algorithm for solving the circular separability problem between any two finite planar sets. Bhattacharya [2] improved the running time to $O(n \log n)$. Finally O'Rourke, Kosaraju and Megiddo [3] found an optimal linear time algorithm to solve this problem. In this paper we study a new version of the problem. Let P be a fixed convex polygon with n vertices. We propose an algorithm for solving the circular separability problem between P and any query convex polygon Q with m vertices, both given as an ordered list of their elements. Our algorithm uses a linear time preprocessing on P, and has $O(\log n \log m)$ query time complexity.

1 Circular separability

Suppose for ease of description that the vertices of P and Q are in general position, and that P has no four co-circular vertices. Let C_{P} be the minimum enclosing circle of P and let c_{P} be its center. It is known that c_{P} can be found in $O(n)$ time [4]. Note that c_{P} is a point on an edge of the farthest-point Voronoi diagram of the vertices of P. Clearly if the interiors of Q and P are not disjoint, our problem has no solution, hence we will suppose that $d(P, Q) \geq 0$. It is also clear that if Q and C_{P} have disjoint interiors, then C_{P} is trivially the minimum separating circle.

1.1 Preprocessing

We first calculate the farthest-point Voronoi diagram of the vertices of P in linear time [5]. It can be seen as a tree rooted in c_{P} and created by adding leaves on every unbounded edge; we will denote this tree as $\mathcal{V}(P)$. For each vertex p of P, let $R(p)$ be the farthestpoint Voronoi region associated to p, and assume that p has a pointer to $R(p)$. Let x be a point on an edge of $\mathcal{V}(P)$, and let T_{x} denote the path contained in $\mathcal{V}(P)$ joining c_{P} to x.

We will use the data structure on $\mathcal{V}(P)$ proposed by Roy, Karmakar, Das and Nandy in [6], which can be constructed in linear time and uses linear space. Given a vertex v in the tree $\mathcal{V}(P)$, this data structure allows us to do a binary search on the vertices of $\mathcal{V}(P)$ lying on T_{v}.

1.2 The minimum separating circle

We will call every circle containing P and whose interior does not intersect Q a separating circle. Let c^{\prime} be the center of the minimum separating circle. In this section we will find c^{\prime} starting from the center of an arbitrary separating circle.

Given $x \in \mathbb{R}^{2}$, let $C(x)$ be the minimum enclosing circle of P with center on x, and let $\rho(x)$ be the radius of $C(x)$. The following is a well known result for the farthest-point Voronoi diagram.
Proposition 1.1 Let x be a point on $\mathcal{V}(P)$. Then ρ is a monotonically increasing function along the path T_{x} starting at c_{P}.

We now address some properties of separating circles, some of which are given without proof.
Observation 1.2 The minimum separating circle has its center on $\mathcal{V}(P)$.
Observation 1.3 Let $x, y \in \mathbb{R}^{2}$. For every $z \in[x, y]$ it holds that $C(z) \subseteq C(x) \cup C(y)$.
The previous observation implies that the minimum separating circle is unique.
Proposition 1.4 Let x, y be two points on $\mathcal{V}(P)$ such that $C(x), C(y)$ are separating circles and x, y belong to the boundary of the Voronoi region $R(p)$. If z is the lowest common ancestor of x and y in $\mathcal{V}(P)$, then $C(z)$ is a separating circle; moreover $\rho(z) \leq$ $\min \{\rho(x), \rho(y)\}$.
Proof. Suppose that $y \notin T_{x}$ and $x \notin T_{y}$, otherwise the result follows trivially. Assume then that the paths connecting x and y to z have disjoint relative interiors. Let $\ell_{z, p}$ be the straight line through z and p; this line leaves x and y in different semiplanes. Let z^{\prime} be the intersection between $\ell_{z, p}$ and $[x, y]$; by Observation 1.3 we know that $C\left(z^{\prime}\right) \subseteq C(x) \cup C(y)$. Since z^{\prime}, z, p are co-linear, then $C(z) \subseteq C\left(z^{\prime}\right)$, and thus $\rho(z)<\rho\left(z^{\prime}\right)$; see Figure 1(a). Finally, by transitivity we have that $C(z) \subset C(x) \cup C(y)$, which implies that $C(z)$ is a separating circle. Using Proposition 1.1 we conclude that $\rho(z) \leq \min \{\rho(x), \rho(y)\}$.

Now we generalize the previous result.
Lemma 1.5 Let x, y be two points on $\mathcal{V}(P)$ such that $C(x), C(y)$ are separating circles. If z is the lowest common ancestor of x and y in the rooted tree $\mathcal{V}(P)$, then $C(z)$ is a separating circle; moreover $\rho(z) \leq \min \{\rho(x), \rho(y)\}$.
Proof. Proceeding by contradiction, suppose that $C(z)$ is not a separating circle. Let w_{x} be a point on T_{x} such that $\rho\left(w_{x}\right)=\min \left\{\rho(w): w \in T_{x}\right.$ and $C(w)$ is a separating circle $\}$; thus $w_{x} \neq z$. Consider the intersections of the segment $\left[w_{x}, y\right]$ with $\mathcal{V}(P)$ and suppose that the intersection points are $w_{x}=x_{0}, x_{1}, \ldots, x_{k}=y$ in that order. Let z^{\prime} be the lowest common ancestor of w_{x} and x_{1} in $\mathcal{V}(P)$. It is clear that w_{x} and x_{1} belong to the same Voronoi region. Thus by Proposition 1.4, $C\left(z^{\prime}\right)$ is a separating circle. Note that z^{\prime} belongs to T_{x} which is a contradiction with the definition of w_{x}; our result follows.

Figure 1. (a) Proof of Proposition 1.4. (b) The construction of s_{0}.
Theorem 1.6 Let s be a point on an edge of $\mathcal{V}(P)$ such that $C(s)$ is a separating circle. Then c^{\prime} belongs to T_{s}.

Proof. Let w be a point on an edge of T_{s} such that

$$
\rho(w)=\min \left\{\rho(z) \mid z \in T_{s} \text { and } C(z) \text { is a separating circle }\right\} .
$$

Suppose that $w \neq c^{\prime}$; thus $c^{\prime} \notin T_{s}$. Therefore by Lemma 1.5, if z is the lowest common ancestor of c^{\prime} and w, then $C(z)$ is a separating circle with $\rho(z) \leq \rho\left(c^{\prime}\right)$. Also, since $c^{\prime} \notin T_{w} \subseteq T_{s}$, the inequality is strict, which is a contradiction; our result follows.

2 The algorithm

In this section, we present an algorithm to find c^{\prime}. Our algorithm first finds a separating circle with center s_{0} on an edge of $\mathcal{V}(P)$. Then we search for c^{\prime} using a binary search on $T_{s_{0}}$.

We first construct a straight line L separating P and Q in logarithmic time [7]. Let us assume that p_{L} is the unique point in P closest to L. Otherwise, rotate L slightly, keeping P and Q separated by L. Let L_{\perp} be the perpendicular to L that contains p_{L} and let s_{0} be the intersection of L_{\perp} with the boundary of $R\left(p_{L}\right)$. Note that $d\left(s_{0}, p_{L}\right)$ defines the radius of $C\left(s_{0}\right)$, therefore $C\left(s_{0}\right)$ is a separating circle; see Figure 1(b). Also, by construction s_{0} is on an edge of $\mathcal{V}(P)$. It is clear that we can find s_{0} in $O(\log n+\log m)$ time. Suppose that s_{0} is on the edge $x y$ of $\mathcal{V}(P)$, and let $T_{x}=\left(c_{P}=u_{0}, u_{1}, \ldots, u_{r-1}=y, u_{r}=x\right)$. It follows from Theorem 1.6 that c^{\prime} is on an edge of T_{x}.

Using the data structure proposed by Roy, Karmakar, Das and Nandy [6], we perform a binary search for c^{\prime} on the vertices of T_{x} as follows. Initially, let $j=0$, and $k=r$. Let u_{i} be the mid-vertex on the path of T_{x} between u_{j} and u_{k}. First compute $d\left(u_{i}, Q\right)$ in $O(\log m)$ time $[\mathbf{7}]$. Now in constant time, calculate $\rho\left(u_{i}\right)$. If $d\left(u_{i}, Q\right)=\rho\left(u_{i}\right)$, then $u_{i}=c^{\prime}$ and the algorithm ends. If $d\left(u_{i}, Q\right)<\rho\left(u_{i}\right)$, then we search for c^{\prime} between u_{i} and u_{k}; if $d\left(u_{i}, Q\right)>\rho\left(u_{i}\right)$, then we search for c^{\prime} between u_{j} and u_{i}.

Two possibilities arise. If c^{\prime} is a vertex on $\mathcal{V}(P)$, then we will find it in $O(\log n)$ steps. Otherwise, if c^{\prime} is an interior point of an edge $S=[u, v]$ of $\mathcal{V}(P)$, our algorithm will return S such that $c^{\prime} \in S$. Since each step of the binary search requires $O(\log m)$ time, the complexity of the previous search is $O(\log n \log m)$.

Suppose that S is contained in the bisector of two vertices p_{0}, p_{1} of P, and let Q_{S} be the set of points on the boundary of Q visible from every point in S. It can be computed in $O(\log m)$ time. Let $q_{c^{\prime}}$ be the point of intersection of $C\left(c^{\prime}\right)$ and Q. Clearly $q_{c^{\prime}}$ belongs
to Q_{S}; see Figure 2(a). Given three points $p, q, r \in \mathbb{R}^{2}$, let $C(p q r)$ be the circumcircle of the triangle $\triangle(p q r)$. For $x \in Q_{S}$, let $F(x)$ be the radius of the circle $C\left(p_{0} x p_{1}\right)$. It is easy to see that $F(x)$ is unimodal on Q_{S} and attains its maximal at $q_{c^{\prime}}$; see Figure 2(b).

Figure 2. (a) The construction of Q_{S}. (b) $q_{c^{\prime}}$ is maximal under F.

Let $Q_{S}^{*}=\left\{q_{0}, q_{1}, \ldots, q_{r}\right\}$ be the set of vertices of Q lying on Q_{S}. We can perform a binary search for $q_{c^{\prime}}$ on the sorted list Q_{S}^{*} as follows. At each step we take the midpoint q^{*} of the current search list (initially $\left.Q_{S}^{*}\right)$, and compute the value of $F\left(q^{*}\right)$ in constant time. Take two points on each side of q^{*} at epsilon distance on the boundary of Q. If q^{*} is a local maximum of F, then the algorithm returns $q_{c^{\prime}}=q^{*}$. Otherwise, determine if $q_{c^{\prime}}$ lies to the left or to the right of q^{*}. Eliminate half of the list according to the position of $q_{c^{\prime}}$ and repeat recursively. Our algorithm returns either the value of $q_{c^{\prime}}$ if it is a vertex of Q, or a segment $H=\left(q_{i}, q_{i+1}\right)$ of Q_{S} such that $q_{c^{\prime}}$ belongs to H. In the first case we are done, since c^{\prime} can be determined in constant time given the position of $q_{c^{\prime}}$. In the second case, the problem is reduced to that of finding a point $c^{\prime} \in S$ such that $d\left(c^{\prime}, p_{0}\right)=d\left(c^{\prime}, H\right)$. This case can be solved with a quadratic equation in constant time.

Since each step of the binary search requires constant time, the algorithm finds the point $q_{c^{\prime}}$ in $O(\log m)$ time, giving an overall complexity of $O(\log n \log m)$ for the algorithm.

References

[1] C. E. Kim and T. A. Anderson, Digital disks and a digital compactness measure, STOC '84: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, (1984), 117-124.
[2] B. K. Bhattacharya, Circular separability of planar point sets, Computational Morphology (1988), 25-39.
[3] J. O'Rourke, S. R. Kosaraju and N. Megiddo, Computing circular separability, Discrete and Computational Geometry 1 (1986), 105-113.
[4] N. Megiddo, Linear-Time Algorithms for Linear Programming in R^{3} and Related Problems, SIAM Journal on Computing 12 (1983), 759-776.
[5] A. Aggarwal, L. J. Guibas, J. Saxe and P. W. Shor, A linear-time algorithm for computing the Voronoi diagram of a convex polygon, Discrete Comput. Geom. 4 (1989), 591-604.
[6] S. Roy, A. Karmakar, S. Das and S. C. Nandy, Constrained minimum enclosing circle with center on a query line segment, Computational Geometry 42 (2009), 632-638.
[7] H. Edelsbrunner, Computing the extreme distances between two convex polygons, Journal of Algorithms 6 (1985), 213-224.

